

1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.4

1.5

1.5.1

1.5.2

1.5.2.1

1.5.2.2

1.5.2.3

1.5.3

1.5.4

1.5.5

1.5.5.1

1.5.5.2

1.5.5.3

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

Table	of	Contents
Introduction

Introduction	to	Darwino

Darwino	architecture

Hierarchy	of	libraries

Required	Infrastructure

Installing	a	development	environment

Using	the	studio

Important	concepts

Platform	object

Services	and	extensions

Logging

Properties

Managed	Beans

JSON	library	and	data	binding

HttpClient

Darwino	application	objects

Application

Manifest

Context

Darwino	DB	API

Concepts

Defining	and	deploying	the	database

Documents

Cursors	and	Queries

Accessing	and	Storing	Social	Data

Registering	and	Handling	Events

Security

2

1.6.8

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.10

1.10.1

1.10.1.1

1.10.1.2

1.10.1.3

1.10.2

1.10.3

1.11

1.12

1.12.1

1.12.2

1.8.7

Darwino	API	over	HTTP

JavaScript	APIs

Loading	the	JavaScript	files

Generic	APIs

Developing	a	Darwino	Web	Application

Application	Initialization

Darwino	Application	Filter

Darwino	libs	and	URL	rewriting

Serving	application	resources

Developing	a	Darwino	Web	Application	5.	Enabling	GZIP	compression

Developing	a	Darwino	Web	Application	6.	Enabling	CORS

Developing	a	Darwino	Web	Application	7.	Authentication	and	Authorization

Developing	a	Darwino	Mobile	Application

Mobile	Manifest

Hybrid	Applications

Writing	a	Hybrid	specific	service

Settings

Developing	for	Android

Developing	for	iOS

Business	APIs

User	Service

User	Information

User	Authentication

User	Service	Providers

Mail	Service

Preferences	Service

Optimizing	the	Database

Appendices

Utility	Libraries

Mapping	between	a	Darwino	DB	and	a	relational	database

3

1.12.3The	Query	Language

4

Darwino	User's	Guide

Introduction

5

Introduction
Welcome	to	Darwino!	Darwino	is	an	open	platform	for	rapidly	developing	social	business
applications	targeting	primarily	Mobile	and	the	Cloud.	Importantly,	Darwino	allows
developers	to	focus	on	the	application,	and	not	on	platform	specific	issues	or	wiring	to
other	platforms/data	sources.	Because	of	this,	Darwino	greatly	reduces	the	time	needed
for	you	to	deliver	value	to	your	customers.	Darwino's	full	stack	of	ready-to-run
components	and	connectors	allow	you	to	design	applications	that	run	locally	on	any
mobile	device,	connected	to	any	back-end	data	source,	with	next	to	no	platform-specific
coding.	Finally,	Darwino	leverages	the	skills	of	any	Java	developer	-	allowing	Java
developers	to	move	to	build	enterprise	mobile	applications	with	no	additional	training.

This	developer's	guide	will	help	you	learn	the	specifics	of	Darwino,	and	to	build
applications	in	no	time.	The	following	is	a	high-level	overview	of	Darwino	that	will	get	you
kick-started.

Darwino	Editions

There	are	two	editions	of	Darwino:	The	Community	Edition	and	the	Enterprise	Edition.

Darwino	Community	Edition

The	Darwino	Community	Edition	is	designed	for	non-commercial	developers.
Compatible	with	any	free	database	plan	or	trial	plan,	it	offers	a	wide	range	of
features:

Extensive	database	support,	including	a	no-charge	RDBMS,	IBM	DB2-C	10.5+,
PostgresSQL	9.4+	Open	Source,	IBM	BlueMix,	SQLDB,	Compose,	and
Elephant
Enterprise	Directory	support	for	JNDI	LDAP	access,	IBM	BlueMix,	and	static
files
IBM	Domino	Connector	with	synchronization	of	up	to	three	NSFs	per	instance
of	each	Domino	server
Access	to	all	major	releases,	with	community-based	support

In	addition	to	these	features,	Darwino	will	be	extending	database	support	to	include
Oracle	Express	Edition,	SQL	Server	Express,	and	more	in	the	near	future.

Darwino	Enterprise	Edition

Introduction	to	Darwino

6

The	Darwino	Enterprise	Edition	is	intended	for	commercial	developers	and	others
who	depend	on	periods	of	intense	evaluation	as	they	consider	deployment	of
applications	of	their	own.	The	Darwino	Enterprise	Edition	includes	everything
available	in	the	Community	Edition	as	well	as:

Support	for	all	enterprise	RDBMS
No	limits	on	the	number	of	database	instances
Encrypted	Mobile	SQLite
Unlimited	Domino	connectors
Drivers	for	IBM	Connections	(on	premise	and	cloud)	and	VMM	(running	in	IBM
WebSphere)
Optimized	applications	with	Grunt/Gulp/Bower
Access	to	all	releases,	including	nightly	builds
Darwino	Support

Introduction	to	Darwino

7

Darwino	Architecture
Darwino	is	specifically	designed	and	oriented	around	the	use	of	Java,	on	both	the	server
side	and	the	mobile	side.	As	such,	your	applications	are	built	in	pure	Java,	using	POJOs,
while	deploying	the	application	to	multiple	platforms	is	handled	by	the	Darwino	platform.
Because	of	this,	many	of	the	components	that	Java	developers	are	accustomed	to
remain	consistent	when	developing	for	Darwino,	including:

The	use	of	a	standard	RDBMS	for	data	storage	(although	the	Darwino	DB	JSON
Store	is	much	more	than	a	typical	RDBMS)
LDAP	directory	authentication	and	authorization
Extendable	platform	components	using	standard	Java	techniques
Runs	on	top	of	standard	JVM	Servlet	Container
Add-in	for	Eclipse	developer	studio
Maven	compatible/compliant,	so	you	can	use	whatever	development	tool	you
choose
Write	once,	run	on	Web/Mobile/Hybrid,	with	automatic	porting	of	application	to
Android	and	iOS

Darwino	architecture

8

Required	Infrastructure
Supported	Database	Platforms

Postgres	DB	9.4+
IBM	DB2	10.5	+
Microsoft	SQL	Server	2016+
Oracle	Database	12c+
SQLite	(for	mobile,	provided	by	Darwino)

Webserver

Any	servlet	container	that	is	Servlet	3.0+	compliant	(e.g.,	TOMCAT,	IBM
Websphere,	IBM	Websphere	Liberty)

Supported	Cloud	Deployment	Platforms

IBM	BlueMix

Supported	Mobile	OS

Android	4.4+
iOS	8.1+

Supported	LDAP	servers

Microsoft	Active	Directory
Oracle	Directory	Server
IBM	Domino
IBM	Tivoli	Directory	Server

Required	Infrastructure

9

Installing	a	development	environment
Installing	a	development	environment	is	decribed	in	the	Installation	guide,	available	here:
https://playground.darwino.com/playground.nsf/Doc_InstallationGuide.xsp

Installing	a	development	environment

10

https://playground.darwino.com/playground.nsf/Doc_InstallationGuide.xsp

Using	the	Studio	-	Creating	your	first
Darwino	application

The	Darwino	Application	Wizard
The	Darwino	application	wizard	is	the	first	step	in	creating	a	Darwino	application.

	The
Wizard	generates	a	set	of	Maven	projects.	The	top	project	is	the	container	for	the	other
projects.

Using	the	studio

11

	Which	projects	are	generated	depends	on	the
options	that	were	selected	in	the	wizard.

-shared:	This	project	contains	the	Java	code	that	is	shared	by	all	the	platforms.

--	AppDatabaseDef.java	defines	the	metadata	of	the	JSON	store.	This	metadata	is
used	when	the	database	is	initially	created,	and	then	anytime	you	need	to	make	a
change.

The	first	time	replication	runs,	the	tables	will	optionally	be	created	automatically.	It
can	also	check	to	ensure	that	the	tables	are	at	the	required	level.	If	the	database
and	the	DATABASE_VERSION	are	equal,	it	will	proceed.	If	the	table	version	is
higher	than	expected,	an	error	will	be	raised.	If	the	table	version	is	lower,	you	can
upgrade	the	tables	(if	autodeploy	was	selected),	or	raise	an	error.

In	the	enterprise,	it	is	often	the	case	that	the	database	developer	does	not	have	the
authority	to	create	and	modify	tables	on	the	J2EE	server;	that	task	is	restricted	to
the	database	administrator.	To	accomodate	this,	Darwino	provides	the
AppDDLGenerator,	a	class	that	will	create	the	DDL	text	file	that	can	then	be	given	to
the	administrator	for	processing.	The	DDL	file	is	created	considering	the	database
definition,	any	customizations,	and	the	database	provider.	The	developer	will	run	the
AppDDLGenerator	in	Eclipse,	and	it	will	produce	the	DDL	file	in	the	console.

Using	the	studio

12

--	AppDBBusinessLogic.java	provides	the	means	to	handle	database	events.
Examples	include	the	Document	events	(create,	edit,	delete)	and	database
replication	events.

--	AppManifest.java	defines	the	options	for	the	Darwino	application	layer.	The
options	defined	here	are	shared	among	all	platforms.	For	example,	the
getDatabases()	method	returns	the	database	names	used	by	the	application,	and
getLabel()	returns	the	database	label	for	J2EE.

--	AppServiceFactory.java	-	In	a	Darwino	app,	all	of	the	business	logic	is	isolated
into	services	that	can	be	exposed	as	web	services.	By	default	it	provides	you	with	a
set	of	services,	such	as	the	JSON	store,	but	it	also	allows	you	to	create	your	own
services.	It	is	in	AppServiceFactory	where	custom	application	services	are	defined.

The	wizard	generates	a	very	basic,	example	skeleton	service	that	is	ready	to	use.

There	is	also	the	RestServiceBinder	which	maps	URLs	to	different	services,	in	a
platform/library	independent	manner.

-webui:	This	project	is	generated	when	the	wizard	is	instructed	to	create	a	J2EE	or
hybrid	app.	It	contains	the	web	artifacts	that	are	consumed	by	the	web	application.
It’s	not	under	“shared”	because	we	can	have	apps	that	are	not	web	apps,	for
example	pure	backend	apps	on	the	server,	or	native	apps	for	mobile	devices.

It	is	a	basic	skeleton	using	web	technologies	and	AngularJS.	AngularJS	is	not	a
requirement,	but	it	is	recommended.	The	index.html	file	that’s	generated	includes
AngularJS	code,	but	you	can	delete	it	and	use	whatever	framework	you	like.

The	web	resources	are	packaged	under	a	folder	called	DARWINO-INF	under
src/main/resources	(a	Maven	convention	for	where	to	put	resources).

Darwino	comes	with	a	custom	service	that	is	able	to	read	the	resources	inside	that
directory	and	act	as	though	they	were	part	of	your	J2EE	project	and	part	of	your
mobile	assets.

-j2ee:	This	is	a	J2EE	wrapper	to	this	project.	It	includes	the	Java	in	the	Java	runtime
and	it	includes	the	web	resources	in	the	runtime.

The	pom.xml	defines	the	dependencies	of	the	project.	In	our	case,	it	shows	that
we’re	including	the	demo-app-shared	and	demo-app-webui,	thus	all	the	content	in
both	projects	will	be	included.

Using	the	studio

13

In	the	web.xml,	we	can	point	to	Darwino	artifacts,	which	are	either	servlets	or	filters.
Several	of	these	are	of	particular	importance.	The	DarwinoJ2EEFilter	handles	on-
the-fly	transformation	of	url	requests,	allowing	the	folder	structure	to	vary	without
requiring	code	modifications	to	accommodate	the	changes,	and	making	urls
platform-independent).

Defined	in	web.xml:

DarwinoAppResourcesServlet
DarwinoJ2EEFilter:	When	a	request	comes	in,	this	is	the	first	filter	to	be
activated.	It	retrieves	the	current	context	and	puts	it	on	the	stack	so	it	becomes
available	to	the	application.	It	does	this	for	every	URL.
DarwinoGlobalPathRewriterFilter	translates	all	of	the	URLs	containing
$darwino-xxx/...	into	/.darwino-xxx/...	paths.	All	the	predefined	Darwino	services
are	now	mapped	to	/.darwino-.	This	makes	the	url	completely	platform-
independent.
Darwino	services:	for	example,	built-in	services	like	the	JSON	store,	or	custom
(user-created)	services	served	by	the	DarwinoServiceDispatcher	filter.

In	order	for	the	highest	level,	the	Darwino	application,	to	have	the	context	it
requires,	at	application	initialization	the	com.demo.app.AppContextListener	is
triggered	before	anything	else.	It	provides	the	application	with	access	to	all	of	its
environment	information.	As	a	listener,	it	cannot	pass	parameters,	but	the
application	can	have	global	parameters,	so	the	listener	uses	global	parameters	to
pass	context	information

Authentication

The	wizard	generates	code	allowing	the	use	of	J2EE	authentication,	but	this	form	of
authentication	requires	the	J2EE	server	to	be	connected	to	your	directory	of	users,	and
every	web	application	server	has	its	own	mechanism	for	doing	that;	this	approach	does
not	lend	itself	to	true	portability.	Also,	J2EE	authentication	lacks	granularity.

Darwino	comes	with	its	own	authentication	filter	than	you	can	choose	to	use.	This	allows
us	to	use	our	own	user	directory	regardless	of	the	application	server.

There	are	two	other	files	in	WEB-INF	that	are	critical	in	solving	the	problem	of
configuring	application	parameters	such	as	database	connections	and	logging.	Rather
than	storing	this	configuration	within	the	application	itself,	we	can	externalize	the

Using	the	studio

14

configuration.	This	allows	configuration	changes	to	be	made	without	recompilation.	It’s
up	to	the	developer	to	decide	where	these	files	are	stored,	but,	in	keeping	with	J2EE
convention,	Darwino	stores	these	files	in	the	WEB-INF	directory.

darwino-beans.xml	These	are	Java	objects,	and,	as	managed	beans,	the	platform
will	automatically	create	instances	of	these	objects	when	needed.	Contains	sections
for:

Database	access
IBM	Connections	endpoint
HttpTracer	–	allows	tracing	of	all	aspects	of	the	communication	between	client
and	server
Static	directory	of	users

Each	bean	has	a	type	and	a	name,	and	can	have	an	alias	list,	which	can	include	the
alias	“default”.

darwino.properties	There	is	an	API	in	Darwino	to	get	these	property	values.

-mobile:	This	project	doesn’t	run	anywhere.	It	is	a	container	for	resources	that	are
common	to	the	mobile	platforms	(currently	iOS	and	Android).
AppMobileManifest.java	is	like	AppManifest,	but	specifically	for	mobile	devices.	It
adds	a	set	of	options	that	are	very	specific	to	mobile	devices.	The	wizard	provides
only	the	basic	skeleton.	The	developer	puts	the	common	mobile	code	and
resources	here.

-android-hybrid:	Depending	on	wizard	choices,	you	can	have	an	Android-hybrid
and/or	and	Android	native.	Typically	you’ll	choose	one	and	not	both.	We	are	not
showing	Android	native	in	the	demos.	This	project	depends	on	all	the	others	except
the	J2EE	app.	It	includes	all	the	Android	assets,	such	as	the	AndroidManifest.xml.	It
is	exactly	like	a	project	generated	with	the	Android	wizard,	except	it	includes	a	set	of
dependencies	on	the	Darwino	project.

AndroidApplication.java	is	a	core	Android	SDK	object	that	initializes	the	Darwino
Application	object,	as	well	as	the	context.

DarwinoApplication.java	contains	two	very	important	objects:

DarwinoApplication	is	a	singleton	that	acts	as	the	entry	point	for	all	of	the
objects	of	the	Darwino	application,	including	the	manifest,	and	it	enables	the
triggering	of	Darwino	application	actions	such	as	replication.
DarwinoContext,	which	is	generated	by	the	Darwino	runtime.	It	has	a	different
behavior	depending	on	the	platform,	but	gives	access	to	the	same	information.

Using	the	studio

15

A	mobile	environment	is	single-user,	while	the	server	environment	is	multi-user.	In
both	cases,	there	will	be	one	Darwino	application	which	is	exactly	the	same
regardless	of	the	user,	however	the	DarwinoContext	on	the	J2EE	server	is	the
context	of	the	current	request	(“Who	is	the	user	for	this	request?	What	is	the
contextual	environment–the	execution	environment–of	this	request?”).	On	the
server,	there	is	one	new	DarwinoContext	created	per	request.	On	the	mobile	device,
none	of	this	applies.

Of	course,	if	you	want	to	just	use	the	JSON	API	to	get	this	context	info,	you	can,	but
these	objects	make	the	job	much	easier.

DarwinoServiceDispatcher:	this	is	the	class	that	is	used	by	the	mobile	local	HTTP
Server	to	dispatch	the	services.	By	default,	all	services	are	enabled,	but	with
DarwinoServiceDispatcher	we	can	selectively	enable	and	disable	services.

MainActivity:	This	is	an	Android	SDK	object.	This	implementation	creates	an
embedded	Android	browser.

SplashScreenActivity	provides	the	splash	screen.

-moe-hybrid:	This	is	the	iOS	version	of	the	app.	We’re	writing	Java	for	iOS,	but	Java
is	not	supported	natively	by	iOS,	so	we	rely	on	3rd-party	frameworks.	We	currently
support	Multi-OS	Engine	(MOE).	As	of	Darwino	1.5,	RoboVM	is	no	longer	supported
as	the	product	as	been	acquired	and	ceased	by	Microsoft.

Just	as	we	generate	an	Android	wrapper,	we	generate	a	MOE	one.	The	contained
classes	match	those	of	the	android-hybrid,	with	MainViewController	equating	to
MainActivity.

Using	the	studio

16

Important	Concepts
Platform	agnosticism	is	central	to	the	Darwino	philosophy.	In	this	section	we	will	look	at
several	of	the	techniques	Darwino	employs	to	ensure	that	your	applications	will	work
across	a	variety	of	server	and	mobile	device	platforms	with	a	minimum	of	programmer
effort.

Important	concepts

17

The	Platform	Object
Darwino	applications	execute	on	multiple	platforms,	including	iOS,	Android,	JVM,	and	a
Web	Container.	Running	code	must	handle	differences	in	these	platforms.	The	Darwino
Platform	Object	manages	these	platform	differences	so	that	you	do	not	have	to	worry
about	them.

Darwino	is	built	to	be	platform	agnostic,	and	exposes	everything	in	the	architecture	as
pluggable.	The	foundation	of	this	capability	is	the	Darwino	Platform	object,	which
encapsulates	all	platform-specific	functionality.	When	working	with	multiple	platform
development,	even	simple	tasks	such	as	logging	are	managed	differently	depending	on
which	platform	the	application	is	currently	running.	The	Darwino	Platform	object	allows
you	to	interact	with	platform	capabilities	such	as	logging	in	an	abstract	manner,	without
having	to	determine	the	execution	platform.

NOTE:	The	Darwino	Platform	(com.darwino.commons.Platform)	is	instantiated	as
a	singleton	object.

Services
The	Platform	object	provides	several	default	services.	See	Services	and	extensions	for
details.

Developers	can	extend	the	Platform	object	using	custom	services	and	extensions.

The	Platform	object	is	the	entry	point	for	all	services,	and	the	Platform	object
makes	all	services	available	from	anywhere	in	your	application.	Further,	any
library	can	contribute	services,	as	Darwino	services	are	POJOs,	and	do	not	need
to	extend	any	particular	interface.

Platform	Configuration
In	order	to	maintain	platform	agnosticism,	Darwino	does	not	depend	on	the	use	of	fixed
configuration	files;	instead,	it	is	the	Platform	object	that	provides	access	to	configuration
properties.

Platform	object

18

https://en.wikipedia.org/wiki/Singleton_pattern

Services	and	extensions
There	are	two	elements	in	the	platform:	services	and	extensions.	Services	and
extensions	are	created	lazy,	when	they	are	needed	for	the	first	time.

Services	and	extensions	are	defined	by	plugins,	or	by	the	Darwino	Application	object.	A
plugin	is	a	class	that	can	be	provided	either	by	libraries	or	by	your	application	directly,
and	they	can	register	services	and	extensions	to	the	platform.

Services
A	service	is	a	singleton.	For	a	particular	class	of	service,	there	will	be	ONE
implementation.	If	there	are	multiple	implementations,	you	will	get	a	runtime	error.

Extensions
Services	and	extensions	differ	in	that	an	extension	can	have	multiple	implementations
and	they	can	all	work	together	at	the	same	time,	like,	for	example,	a	database
connection.	You	can	have	a	connection	to	Postgres	and	a	connection	to	DB2	and	use
both	of	them	within	the	same	app.	An	extension	is	like	a	service	but	it	can	have	multiple
instances	that	are	non-exclusive.

The	Darwino	wizard	will	generate	a	skeleton	plugin	for	your	application	that	you	can	use
to	override	or	add	to	the	default	platform	implementation.

Services	and	extensions

19

Logging
Darwino	provides	its	own	logging	library	for	each	platform,	and	dynamically	chooses	the
appropriate	one	for	the	current	platform.	This	makes	it	completely	transparent	to	the
developer;	your	logging	code	will	be	fully	cross-platform.

//	General	logging

Platform.log("Logging	{0}	unconditionally",	"My	Message");

Platform.log(new	Exception(),"Logging	an	Exception,	{0}",	"Here	it	is");

The	log()	method	will	print	unconditionally	to	the	console	when	running	on	the	web
application	server,	or	to	the	Android	or	iOS	logging	mechanism	when	running	on	the
mobile	device.

Log	groups

While	Platfom.log	is	the	basis	for	logging	in	Darwino,	we	can	also	use	the	more	powerful
concept	of	log	groups.	Log	groups	in	Darwino	are	an	abstraction	of	the	various	platforms'
built-in	logging	mechanisms.

A	group	is	a	named	object,	typically	with	a	hierarchical	name	of	the	form	"a.b.c".	You	can
log	different	classes	of	messages,	such	as	information,	warnings,	errors,	and	debug
information	to	a	group.	Then	you	can	enable	a	particular	a	logging	level	for	a	specific
group.

For	example,	you	could	create	a	log	group	named	"archive".	You	could	then	refer	to
"archive.info"	and	pass	some	strings	or	content.	You	could	enable	this	group	for	a
particular	level	of	logging,	for	example	warnings,	or	errors	plus	warnings,	or	errors	plus
warnings	plus	information,	or	everything	including	debug	information.

Generally,	you	define	hierarchical	groups;	this	creates	the	possibility	of	functional
logging.	You	could	then,	for	example,	enable	logging	only	for	"archive.permanent"	or
"archive.permanent.*".

Logging

20

Properties
It's	good	to	be	able	to	externalize	some	application	properties.	You	can	pass	properties
to	an	application	and	then	access	these	properties	through	a	service.	The	property
service,	getProperty()	method,	and	putProperty()	method	are	the	means	for	working	with
these	externally-defined	properties.

The	properties	are	defined	in	a	manner	similar	to	how	managed	beans	are	defined,
except	instead	of	being	in	the	darwino-beans.xml	file,	properties	are	in	the
darwino.properties	file.	The	properties	file	can	be	at	the	same	file	system	paths	as	the
darwino-beans.xml,	and	can	be	available	through	a	JNDI	call.

Property	references	in	web.xml

It's	possible	to	reference	Darwino-related	properties,	defined	within	the	web.xml	file,	via
the	Darwino	Application	Listener.

Here,	we	see	a	paramater	value	being	extracted	from	a	named	property:

<context-param>

				<param-name>dwo-sync-trace</param-name>

				<param-value>${discdb.sync-trace=false}</param-value>

</context-param>

Darwino	will	check	the	platform	for	a	property	called	"discdb.sync-trace"	and	return	its
value.	If	it	is	not	found,	it	will	use	the	default	value,	which	is	"false"	in	this	example.

Properties

21

Managed	Beans
A	key	component	of	the	Darwino	Architecture	is	the	concept	of	managed	beans.	This
concept	is	borrowed	from,	although	different	from,	Spring	and	JSF.	Managed	beans	are
manageable	resources	–	Java	objects	that	are	instantiated	by	the	platform	when
needed,	and	destroyed	when	they	go	out	of	scope.

Common	managed	beans	include	database	connections,	user	directory	connectors,	and
several	services,	such	as	the	mail	service.

Darwino	uses	managed	beans	primarily	as	a	generic	way	to	configure	the	platform.

Accessing	a	managed	bean

A	managed	bean	is	defined	by	a	type,	a	name,	and,	eventually,	aliases.	For	example,
when	the	JSON	store	runtime	looks	for	a	database	connection,	it	searches	for	a	bean	of
type	'darwino/jsondb',	with	a	specific	name.	The	name	generally	comes	from	the
Application	object	which	defines	the	names	to	use	by	this	application.	When	multiple
names	are	used,	then	the	runtime	searches	for	a	bean	with	the	first	name	and,	if	it	is	not
found,	it	tries	the	other	names	in	order	until	it	finds	a	bean	that	matches.

Configuring	Managed	Beans

Managed	beans	are	provided	by	extension	points.	You	can	define	your	managed	beans'
location	as	a	custom	extension.	Where	managed	means	are	loaded	from	depends	on
the	DefaultWebBeanExtension	class.	The	class	looks	for	beans	in	various	places.

It	first	looks	using	JNDI.	It	looks	for	an	entry	in	the	path	java:/comp/env/darwino-beans.	If
it	finds	one,	it	will	either	be	a	text	file	or	a	url	pointing	to	a	file.	Either	way,	it	will	interpret
the	XML	found	there	and	load	the	bean	accordingly.

Next	it	looks	to	the	web	application	server,	following	the	conventions	for	the	various
application	servers.

After	that,	it	looks	in	the	classpath.	It	looks	for	a	file	called	darwino-beans.xml	within	the
current	classpath.

Managed	Beans

22

Then	it	looks	in	WEB-INF	for	a	darwino-beans.xml	file.	In	addition,	it	will	search	there	for
a	darwino-beans	file	with	a	name	determined	by	the	application's	configuration	files
suffix,	such	as	"bluemix'.	The	resulting	file	that	Darwino	will	look	for	would	then,	in	this
case,	be	"darwino-beans.bluemix.xml".	Thus,	specifying	the	suffix	determines	which
darwino-beans	files	will	or	will	not	be	loaded.

After	that,	if	there	is	a	system	property	called	"darwino-beans"	containing	either	XML	or	a
URL,	then	Darwino	will	load	the	beans	specified	within.

Finally,	Darwino	will	look	for	an	environment	variable	called	"darwino-beans",	and	it	wil
process	it	just	as	it	does	the	similarly-named	system	variable	mentioned	above.

Managed	beans	are	configured	using	the	following	xml	structure:

<bean	type="[defined	bean	type]"	name="[unique	bean	name]"	class="[full	class	name

]"

				alias	"[optional	alias	names,	separated	by	comma"/>		

				<property	name='[property	name]'>[property	value]</property>	//list	of	propert

ies		

</bean>

Managed	bean	configurations	can	instantiate	multiple	sets	of	bean	objects	lists	simply	by
using	a	list	tag	as	follows:

<bean	type="[defined	bean	type]"	name="[unique	bean	name]"	class="[full	class	name

]"

				alias	"[optional	alias	names,	separated	by	comma"/>		

				<list	name	=	"[list	name]">

								<bean	class='[class	name]'>

												//property	list	for	instance

								</bean>

								<bean	class='[class	name]'>

												//property	list	for	instance

								</bean>

								<bean	class='[class	name]'>

												//property	list	for	instance

								</bean>

								//etc.

				</list>												

</bean>

For	nested	beans,	and	if	the	bean	class	is	an	inner	class	of	the	main	bean,	the	class
name	can	simply	be	".InnerClassName".	In	the	example	below...

Managed	Beans

23

<bean		class="com.acme.business.Finance">

<property	name="account">

		<bean		class="com.acme.business.Finance.Account">

...the	last	statement	can	be	shortened	to:

		<bean		class=".Account">

A	list	can	also	match	a	Java	array,	and	Maps	can	be	used	as	well:

<map	name="properties">

				<entry	key='....'>...value...</entry>

				<entry	key='....'>...value...</entry>

</map>

As	you	can	see,	this	structure	is	intentionally	generic.	While	the	bean	type	must	be
defined	based	upon	a	definition,	the	remainder	of	the	definition	is	completely	generic.
This	allows	for	any	type	of	object	to	be	defined	as	a	bean	and	managed	by	the	platform.

If	a	call	is	made	to	a	managed	bean,	the	platform	checks	to	see	if	the	object	exists	and,
if	not,	it	instantiates	the	object	according	to	this	definition	file,	using	the	class	name	and
configured	property	definitions.	This	leads	to	Darwino	applications	being	defined	in	a
very	flexible	and	generic	manner.

Property	references	in	managed	bean	definitions

When	the	Darwino	code	that	parses	managed	bean	definitions	encounters	a	property
name,	it	looks	first	to	see	if	it	is	defined	in	the	file	as	a	local	property.	If	it	is	not	defined
locally,	it	will	then	look	to	the	platform	for	a	property	of	that	name.	Finding	it,	it	will	use	its
value	in	the	managed	bean	definition.

This	allows	you	to	drive	the	creation	of	the	managed	beans	from	outside	the	application.

Property	references	are	of	the	form:

${propertyname[=default	value]}

The	goal	with	all	of	this	is	to	have	a	WAR	file	that	is	customizable	from	outside	the
application,	without	having	to	repackage	the	application.

Managed	Beans

24

Scope	of	Managed	Beans

Managed	beans	have	a	defined	scope.	By	default,	if	you	do	not	provide	a	scope,	the
scope	will	be	considered	global,	which	means	that	the	bean	will	be	a	singleton	object,
with	a	single	instance	for	the	entire	application.	Other	scope	choices	are:

None:	A	new	instance	of	the	bean	is	created	on	every	call	to	the	bean.	The	bean
object	is	discarded	after	every	call.
Request:	A	new	instance	of	the	bean	is	created	on	every	request,	meaning	the
developer	can	call	the	bean,	then	call	multiple	methods	on	the	same	instance	of	the
bean.	Once	the	bean	object	is	out	of	scope,	it	will	be	discarded,
Session:	A	new	instance	of	the	bean	is	created	and	persisted	for	each	session.
Once	the	session	is	discarded,	the	bean	object	is	discarded.
Application:	A	new	instance	of	the	bean	is	created	for	each	calling	application	in	a
particular	class	loader.

Managed	Beans

25

JSON	library	and	data	binding
A	lot	of	Darwino	is	based	on	top	of	JSON,	and	particularly	the	JSON	store.	There	is	no
standard	JSON	library	in	Java,	and	the	ones	that	are	available	can	be	inconsistent	and
incompatable	with	one-another;	Darwino	deals	with	this	in	two	ways:

The	Darwino	library	provides	a	JSON	Factory,	which	sits	atop	your	libraries	of
choice	and	encapsulates	all	the	features	you	need	to	manipulate	JSON.	It	provides
a	uniform	view	of	JSON	-	a	common	API	on	top	of	disparate	API	implementations.

Darwino	also	provides	its	own	library	for	JSON.	While	other	libraries	can	be	used
via	the	factory	described	above,	these	libraries	tend	to	be	poor	performers,
cumbersome,	or	just	heavy-weight.	Their	dependencies	make	for	heavy	mobile	app
code.	Also,	it	is	not	always	convenient	to	have	to	work	though	the	extra	layer
provided	by	the	Darwino-provided	adaptor.

The	Darwino	library	is	based	on	top	of	one	written	at	IBM.	It	is	100%	compatible	with	the
JSON	standard,	and	has	been	optimized	for	JSON	parsing,	and	it	includes	JSON
extensions.	This	library	is	used	all	over	the	Darwino	product,	and	it	makes	it	easy	to	deal
with	and	consume	JSON	objects	and	arrays.

Because	of	this,	best	practice	when	manipulating	JSON	in	your	Darwino	application	is	to
use	the	default	JsonJavaFactory	instance	and	its	JsonObject	and	JsonArray	classes.

The	JsonObject	is	a	Map	of	string/object;	the	keys	are	strings	and	the	values	are
objects.	This	means	that	if	you	have	a	function	that	is	expecting	a	Map	as	a	parameter,
you	can	pass	it	a	JsonObject.

The	JsonArray	object	is	a	list	of	values	implemented	as	a	Java	List.	It	is	a	List	of	objects.
It	has	all	of	the	methods	you'd	expect	from	a	JSON	array,	but	it	is	also	a	List,	so	if	you
have	a	function	expecting	a	List	of	objects,	you	can	pass	it	a	JsonArray	as	a	parameter.

To	make	JSON	values	easily	consumable	in	Java,	a	string	inside	a	JsonObject	is	a	Java
String,	a	number	is	a	Java	Number,	and	a	boolean	is	a	Java	Boolean.

In	standard	JSON,	we	have	key/value	pairs.	Keys	must	be	wrapped	in	double	quotes.
JavaScript,	though,	allows	single	quotes	or	key	names	with	no	quotes	at	all.	The
Darwino	JSON	parser	is	permissive	and	allows	those.	When	it	serializes,	it	does	so
according	to	JSON	standard,	but	when	it	reads,	it	is	permissive.

JSON	library	and	data	binding

26

	//	A	JSON	parser	is	available	through	a	Factory

JsonFactory	f	=	JsonJavaFactory.instance;

JsonObject	jo	=	(JsonObject)f.fromJson("{a:11,	b:12,	c:	13}");

//	Json	objects/arrays	have	easy-to-use	methods

_formatText("JSON	Object,	compact:	{0}",jo.toJson());

_formatText("JSON	Object,	pretty:	{0}",jo.toJson(false));

//	Or	this	can	be	done	through	a	factory

_formatText("JSON	Object,	compact:	{0}",f.toJson(jo));

_formatText("JSON	Object,	pretty:	{0}",f.toJson(jo,false));

Command	Insertion

Darwino	takes	advantage	of	JSON	comments	to	provide	a	facility	to	insert	commands	in
JSON.	Comments	in	JSON	is	an	extension	to	the	JSON	standard,	and	is	supported	by
Darwino.	Similarly	to	JavaScript,	the	parser	supports	single-line	(//)	and	multi-line	(/	...	/)
comments.

Standard	JSON	has	no	provision	for	inserting	commands.	Darwino's	JSON
implementation	supports	JavaScript-style	comments	as	an	extension,	and	the	parser
can	read	inside	these	comments.	This	feature	enables	reading	and	writing	commands
embedded	in	the	JSON.

When	a	comment	in	JSON	starts	with	"/*%="	the	Darwino	JSON	interpreter	will	interpret
the	JSON	object	that	follows	as	a	command.	It	will	parse	the	contents	and	return	the
result	to	whatever	called	the	parser.	The	parser	will	always	be	looking	for	inersted
commands,	but	if	you	haven't	registered	a	callback	to	handle	the	commands	it	will	do
nothing.

A	typical	use	case	for	this	is	a	progress	bar.	Imagine	that	a	very	large	JSON	file	is	being
returned	to	the	client	via	REST	services.	When	the	client	tells	the	server	that	it	supports
commands,	the	server	can	emit	comments	in	the	JSON	that	describe	activity	progress.
The	client	can	use	those	progress	comments	to	display	a	progress	bar.

A	command	is	generally	a	notification	from	the	code	that	generated	the	JSON	payload,
as	in	this	example	to	track	the	progress	of	a	file.	It	takes	the	form	of	a	JSON	value,
containing	data	that	can	be	interpreted	by	the	consumer.	For	example,	it	can	be	the
current	progress	in	the	whole	file,	like:

/*%={label:'Updating	table	TTT',	progress:	'56%'}	*/

JSON	library	and	data	binding

27

It	is	up	to	the	consumer	to	interpret	its	content	appropriately.

The	Darwino	JSON	parser	can	interpret	commands	when	reading,	but	does	not,	by
default,	emit	them.	To	enable	insertion	of	commands	in	JSON	output,	specify
OPTION_PARTIALPROGRESS	when	creating	the	JsonWriter.	The	HttpServiceContext,
when	processing	an	HTTP	request,	will	then	look	for	a	header	with	a	value	of	"x-dwo-
json-progress"	from	the	caller,	and	only	if	it	sees	that	header	will	it	insert	the	commands
in	its	output.

JSON	Compression

We	can	also	emit	compressed,	binary	JSON	in	place	of	text.	Darwino	does	not	use	this
externally,	as	when	writing	to	a	file	or	to	a	database,	but	it	can	be	used	when
communicating	via	HTTP.	For	example,	when	the	client	is	replicating	with	the	server,	it
uses	a	REST	API	that	is	based	on	JSON.	If	the	client	sends	the	server	a	header	saying
that	the	client	understands	the	binary	form	of	JSON,	then	it	can	compress	the	data.
Values	are	compressed,	and	names	can	be	sent	once	and	subsequently	only	pointed	to.
Also,	this	removes	the	need	for	parsing	the	data.

JSON	Query	Language

There	is	a	query	language	for	JSON,	allowing	you	to	quickly	and	easily	query	JSON
data.	The	query	language	is	actually	a	JSON	document	itself	and	is	super-subset	of	the
MongoDB	one.	This	language	is	used	throughout	Darwino.

Here	is	an	example	showing	the	query	language	being	used	to	populate	a	cursor	based
on	JSON	content:

	Cursor	c	=	store.openCursor()

				.query("{$or:	[{state:'MI'},{state:'TX'}]}");

JSON	Data	Extractor

The	JSON	Data	Extractor	facility	is	similar	to	the	query	language,	but	used	to	extract
fields	and	values	from	a	JSON	document:

Cursor	c	=	store.openCursor()

				.extract("{first:'firstName',last:'lastName'}").range(0,5);

JSON	library	and	data	binding

28

See	Appendix	3.	The	Query	Language	for	details	on	the	Query	Language	and	JSON
Data	Extractor.

JSON	library	and	data	binding

29

HttpClient
Because	a	lot	of	activities	in	Darwino	are	based	on	REST	services,	we	need	a	means	to
connect	to	those	services.	We	need	to	connect	to	them	from	Java,	and	not	only	from	the
browser.	The	Darwino	HttpClient	is	very	easy	to	use.	It	has	classes	for	authentication
and	for	handling	JSON.	For	example,	to	call	a	REST	service,	pass	some	parameters,
and	get	a	result	back,	all	that	is	required	is	to	call	getAsJson().	It	will	handle	the	job	of
composing	the	proper	URL	and	processing	the	result.	In	Java,	the	HTTP	calls	are
executed	synchronously.

String	url	=	"http://localhost/playground.nsf/playground/$darwino-jstore";

HttpClient	c	=	((HttpClientService)Platform.getService(HttpClientService.class))

																						.createHttpClient(url);

//	Call	the	information	service	and	interpret	the	result	as	JSON

//				<base-url>

Object	r	=	c.getAsJson(StringArray.EMPTY_ARRAY);																						

_formatText("JSON	Store	information:	{0}",r);

//	Call	the	user	service	and	interpret	the	result	as	JSON

//				<base-url>/user

Object	r2	=	c.getAsJson(new	String[]{"user"});																						

_formatText("JSON	Store	User:	{0}",r2);

The	Darwino	HttpClient	is	built	on	top	of	the	platform's	own	client;	the	developer	doesn’t
have	to	worry	about	the	specifics	of	the	underlying	HTTP	client.

The	HttpClient	also	handles	GZIP,	ChunkedPost,	and	multi-part	MIME.

HttpClient

30

Darwino	application	objects
Darwino	runtime	objects	exist	for	every	Darwino	application	and	are	created
appropriately	by	the	runtime.	They	are	organized	in	a	class	hierarchy	based	on	the
runtime	platforms.	The	highest	class	in	the	hierarchy	represents	the	features	common	to
all	platforms,	while	the	deepest	ones	are	specific	to	the	runtime	platform.

Typically,	the	hierarchy	looks	like:

Darwino
DarwinoJ2EE
DarwinoMobile

DarwinoIOS
DarwinoAndroid

Application
The	Darwino	application	is	a	singleton.	There	is	one–and	only	one–running	instance.
The	Application	instance	is	the	entry	point	for	all	of	the	application	options,	including	the
manifest	(the	Application's	getManifest()	method	will	return	the	manifest	object).

It	is	through	the	Application	object	that	we	can	perform	application-wide	actions	such	as
triggering	replication.

At	any	time,	the	developer	can	get	access	to	the	current	application	by	calling
DarwinoApplication.get().	If	you	know	the	platform	you're	running	in,	and	if	you	want	to
get	access	to	platform-specific	features,	then	you	can	access	the	specific	application	by
casting	the	application	object	to	the	platform-specific	class,	or	by	calling	get()	on	this
class	(ex:	DarwinoJ2EEApplication.get()).

Darwino	application	objects

31

Darwino	application	objects
Darwino	runtime	objects	exist	for	every	Darwino	application	and	are	created	appropriatly
by	the	runtime.	They	are	organized	in	a	class	hierarchy	based	on	the	runtime	platforms.
The	highest	class	in	the	hierarchy	represents	the	features	commons	to	all	platforms,
while	the	deepest	ones	are	specific	to	the	runtime	platform.

Typically,	the	hierarchy	looks	like:

Darwino
DarwinoJ2EE
DarwinoMobile

DarwinoIOS
DarwinoAndroid

Application
The	Darwino	application	is	a	singleton.	There	is	one	and	only	one	running	instance.	The
Application	instance	is	the	entry	point	for	all	of	the	application	options,	including	the
manifest	(the	Application's	getManifest()	method	will	return	the	manifest	object).

It	is	through	the	Application	object	that	we	can	perform	application-wide	actions	such	as
triggering	replication.

At	any	time,	the	developer	can	get	access	to	the	current	application	by	calling
DarwinoApplication.get().	If	you	know	the	platform	you're	running	in,	and	if	you	want	to
get	access	to	platform	specific	features,	then	you	can	access	the	specific	application	by
casting	the	application	object	to	the	platform	specific	class,	or	by	calling	get()	on	this
class	(ex:	DarwinoJ2EEApplication.get())

Application

32

Manifest
The	Application	Manifest	generated	by	the	Darwino	wizard	defines	the	options	for	the
Darwino	application	layer.	The	options	defined	here	-	such	as	the	database	names	used
in	replication,	the	label	and	description	of	the	application,	and	the	application's	url	-	are
shared	among	all	platforms.

DarwinoApplication	app	=	DarwinoApplication.get();

DarwinoManifest	mf	=	app.getManifest();

_formatText("Label:	{0}",mf.getLabel());

_formatText("Description:	{0}",mf.getDescription());

_formatText("Main	Database:	{0}",mf.getMainDatabase());

In	addition	to	the	global	manifest,	common	to	all	of	the	platforms,	there	are	per-platform
manifests	(J2EE,	Mobile).	These	manifests	hold	the	options	specific	to	their	particular
platform.

Manifest

33

Context
The	Darwino	Context	provides	the	application	with	access	to	all	of	its	environment
information,	including	the	user	identity	and	the	properties	of	the	execution	environment.

The	Context	has	a	different	behavior	depending	on	the	platform,	but	it	provides	access
to	the	same	information.

DarwinoContext	ctx	=	DarwinoContext.get();

_formatText("User:	{0}",ctx.getUser());

_formatText("JsonStore	Session:	{0}",ctx.getSession()!=null);

In	a	web	environment,	there	is	one	context	object	created	per	request.	On	a	mobile
environment,	it	is	a	singleton.

At	any	time,	the	developer	can	get	access	to	the	current	context	by	calling
DarwinoContext.get().	If	you	know	the	platform	you're	running	in,	and	if	you	want	to	get
access	to	platform-specific	features,	then	you	can	access	the	specific	context	by	casting
the	context	object	to	the	platform-specific	class,	or	by	calling	get()	on	this	class	(ex:
DarwinoJ2EEContext.get()).

Context

34

Darwino	DB	API
The	Darwino	database	is	a	NoSQL	store	for	storing	JSON	documents	and	related
attachments.	It	is	actually	a	database	of	JSON	documents,	and	you	can	attach	binary
pieces	to	any	document.

Built	on	top	of	existing	relational	databases,	it	provides	the	benefits	of	a	mature,	well-
established	technology.	Is	it	fully	transactional,	and	it	scales	to	very	large	datasets.	It
also	inserts	well	into	the	existing	infrastructure,	leveraging	existing	processes	such	as
backup	procedures	and	security.

Darwino	takes	advantage	of	the	latest	NoSQL	additions,	such	as	native	JSON	and	data
sharding.

Another	benefit	of	using	relational	databases	as	the	groundwork	is	that	you	can	use	any
existing	tool	that	can	connect	to	a	relational	database	to	access	the	data.	You	can	use
BI	tools,	reporting	tools,	or	other	big-data	analysis	tools,	like	IBM	Watson,	and	they	will
directly	understand	the	database	format.

One	of	the	key	points	of	the	JSON	store	is	that	there	is	a	single	implementation	that
works	everywhere:	servers	(Windows,	Linux,	OS	X,	etc…),	and	mobile	devices.	The
same	code	runs	in	both	environments.	Moreover,	these	disparate	environments	can
replicate	data.

Darwino	DB	API

35

Darwino	DB	API	Concepts

Server
Even	on	a	mobile	device,	you	have	the	Server.	The	server	is	the	entry	point	to	the
database.	All	database	operations	start	from	there.	The	Server	is,	in	effect,	the	database
itself;	the	Server	encapsulates	the	connection	to	a	physical	RDBMS.	It	points	to	your
DB2,	your	SQL	Server,	your	PostgreSQL,	or	to	your	SQL	Lite.	When	you	connect	to	an
RDBMS	on	the	server,	you	will	specify	the	JDBC	path	and	user	password	that	the
runtime	can	use	to	access	the	data.

In	a	multi-user	environment	such	as	on	the	web	server,	the	same	physical	JDBC
connections	will	be	used	across	users.	The	data	access	security	is	then	managed	by	the
Darwino	code.

Session
The	Session	object	allows	different	users	to	share	the	same	server,	as	in	a	web
application	supporting	multiple	simultaneous	users.	In	a	web	environment,	there	is	one
Session	object	created	per	request,	and	discarded	when	the	request	is	completed.	The
Session	object	carries	the	user	credentials,	and	is	available	through	the	DarwinoContext
object.

The	app	itself	will	use	one	database	server	but	multiple	Sessions.	The	Session,	created
from	the	user’s	ID,	is	what	will	be	used	by	the	runtime	to	apply	security	to	the	data.	This
is	an	important	concept	because	the	server	connects	to	the	physical	relational	database
with	one	single	user	and	password,	which	means	that	this	user	and	password	can
access	all	of	the	data.	The	security	is	then	applied	by	the	Darwino	runtime	through	the
Session	object.

Database
Then	comes	the	organization	of	the	data.	The	data	are	organized	into	databases;	but	we
should	not	confuse	that	with	the	relational	database	file.	A	database	is	a	logical	structure
physically	backed	by	a	set	of	relational	tables	in	the	RDBMS.	In	Darwino,	it’s	a	document

Concepts

36

database.	A	Darwino	database	is	a	set	of	documents	with	common	characteristics.

Stores
The	documents	inside	a	database	are	organized	in	stores.	The	store	is	a	container	for
JSON	documents.	This	allows	you	to	put	documents	into	different	“buckets”	that	have
different	characteristics,	such	as	different	indexing	strategies.	For	example,	in	a	CRM
application,	you	may	have	one	document	that	is	a	Customer,	and	another	that	is	a
Product.	You	would	not	want	to	apply	the	same	indexes	to	these	documents.	You	can
specify	further	customization	for	a	store,	such	as	whether	full-text	search	is	enabled.

Pre-defined	stores

In	the	database	definition	are	four	pre-defined	stores.	These	stores	are	created
automatically	by	Darwino	and	can	be	utilized	as-is,	but	they	can	also	have	their
definitions	overridden	and	customized	(by	adding	indexes	or	fields,	for	example).	It	is
always	possible	to	create	specific	stores	for	these	stores’	purposes;	these	pre-defined
stores	exist	as	a	convenience.

_default:	This	store	can	act	as	a	placeholder.	There	is	no	index	or	field	extraction	for
this	store	by	default,	but	it	can	be	used	for	quick-and-dirty	storage	of	data.
_local:	This	store	is	identical	to	the	_default	store,	except	that	it	is	never	replicated.
It	is	useful	for-among	other	things-storing	device-specific	data	on	a	mobile	device.
_comments:	The	social	data	Comments	are	stored	here	by	default.	Storing
comments	here	instead	of	inside	the	documents	themselves	avoids	having	the
documents	marked	as	modified	every	time	a	user	adds	a	comment.	It	also	avoids
replication	conflicts	on	the	documents	when	multiple	comments	are	added	in	a	short
period	of	time.	Also,	because	comments	can	be	complex,	even	including
attachments,	storing	them	here	avoids	making	the	documents	overly	complex.
_design:	Not	currently	used,	this	is	a	special	store	intended	to	store	design
elements	of	the	application.

Document
Then,	there	is	the	document.	In	Darwino,	a	document	is	four	things:

JSON	data.	It’s	not	necessarily	a	JSON	object;	it	could	be	a	JSON	array.	Most	of
the	time	it	will	be	a	JSON	object;	making	it	a	JSON	object	is	a	best	practice,

Concepts

37

because	doing	so	is	necessary	to	allow	use	of	features	such	as	tagging	and
reader/editor	security.	These	are	system	fields	added	at	the	root	of	the	document,
thus	implying	that	the	root	object	is	a	document.
Metadata:	the	UNID,	creation	date,	last	modification	date,	creator	name,	last
modifier	name.	There	are	also	several	replication-related	metadata	items,	but	these
are	generally	not	of	interest	to	the	developer.	These	include	the	last	replicated	time
and	the	sequence	ID	used	in	detecting	replication	conflicts.
Potentially,	a	set	of	binary	attachments.	The	attachments	consist	of	binary	data
identified	by	name,	and	with	an	associated	MIME	type	so	that	consumers	can	know
what	to	do	with	the	data.	A	single	Darwino	document	can	have	multiple
attachments,	but	the	attachment	name	is	the	key	so	there	cannot	be	two
attachments	with	the	same	name	in	a	single	document.	Attachments	are	generally
stored	in	the	relational	database,	in	a	dedicated	table,	and	referenced	from	the
document.	This	can	be	customized	and	the	files	can	be	stored	elsewhere,	such	as
the	file	system	or	a	content	management	system.	In	addition	to	the	attachment
name	and	pointer,	Darwino	also	stores	a	length	and	a	size,	plus	some	replication-
related	information.
A	set	of	social	data.	Darwino,	by	default,	is	social-enabled.	You	can	rate	a
document,	you	can	share	a	document,	you	can	vote	for	a	document,	you	can	tag	a
document,	and	you	can	comment	on	a	document.	The	social	data	is	ABOUT	the
document,	but	it	is	not	stored	IN	the	document.	The	social	data	is	stored	in	a
separate	table,	and	it	is	user-based:	if	five	users	rate	a	document,	there	will	be	five
records	in	the	social	table,	one	per	user,	all	referencing	that	document.	The	table	is
replicated	along	with	the	documents.	There	is	one	exception	to	this	separation	of
the	social	data	from	the	document’s	JSON	data:	tags.	Most	of	the	social	data	are
action	based	(vote,	rate,	etc...)	while	tags	are	entered	by	the	user,	so	they	are	part
of	the	document	fields.	Tags	are	stored	in	both	the	document	and	the	social	table.	In
the	document,	the	tags	are	stored	in	the	field	called	“_tags”,	making	them	easy	for
an	application	to	edit.	When	the	document	is	saved,	the	values	are	copied	to	the
social	table	to	enable	querying.	Comments	are	stored	as	child	documents	since
they	can	have	several	fields	as	well	as	their	own	attachments.

Document	Hierarchy

Documents	can	be	organized	hierarchically.	Every	document	can	have	a	reference	to	a
parent	document.	That	reference	is	stored	in	the	document’s	“_parentid”	field.	This	field
is	accessible	for	read/write	through	the	API.

Concepts

38

The	parent	document	must	be	in	the	same	database	as	the	child.	There	is	a	specific
syntax	for	this	field:	when	the	parent	is	in	the	same	store,	then	the	value	is	just	the
parent	document	UNID.	When	the	parent	is	in	a	different	store,	then	the	syntax	is
UNID:STOREID.

Note:	The	system	does	not	enforce	the	validity	of	the	parent.	This	can	lead	to
documents	pointing	to	a	non-existent	parent.	In	this	case,	they	are	called	"orphan"
documents.

Synchronization	master	documents

Darwino	implements	“functional	replication”.	This	means	that	selective	replication	can	be
based	on	changes	to	an	ancestor	document,	as	opposed	to	the	current	document.

The	synchronization	master	for	a	document	is	the	document	that	is	checked	for	changes
when	the	replicator	is	testing	for	selective	replication	eligibility.	When	a	replication
formula	is	applied	on	a	document	for	selective	replication,	it	actually	applies	to	the	sync
master	if	one	is	defined.	When	the	sync	master	document	changes,	and	only	when	it
changes,	will	the	child	documents	replicate	as	well.	This	is	how	a	sync	master	is	used	to
logically	group	a	set	of	documents	together,	so	that	they	get	replicated	as	a	whole.	For
example,	child	documents	might	use	the	root	parent	document	as	their	synchronization
master.

Sync	master	documents	are	identified	using	the	same	convention	as	parent	documents:
when	the	sync	master	is	in	the	same	store,	then	the	value	is	its	UNID.	When	the	sync
master	is	in	a	different	store,	then	it	is	UNID:STOREID.

There	is	an	option	for	the	save()	method	that	forces	the	master	document	to	update
when	a	document	referring	to	it	as	master	is	updated.	There	are	options	at	the	Store
definition	level	as	well.

It	is	not	necessary	for	a	synchronization	master	to	be	an	ancestor;	other	document
relationships	could	benefit	from	the	ability	to	specifically	define	under	what
circumstances	they	will	replicate	as	a	group.	For	example:	a	customer	and	all	the
documents	related	to	this	customer,	or	all	documents	related	to	a	particular	project.

Social	Data	Updates

The	Store's	setUpdateWithUserData()	method	specifies	whether	the	index	should	be
updated	when	a	document’s	social	data,	which	is	stored	outside	of	the	document,	is
changed,	even	if	the	document	itself	has	not	been	changed.	An	example	of	this	would	be

Concepts

39

if	you	are	tracking	ratings	for	documents	and	you	wish	to	display	the	average	rating	for
each	document.	Rather	than	recalculate	the	average	every	time	you	query	the	index,
you	would	store	the	rating	average	every	time	the	ratings	are	changed.	By	default,	the
index	is	not	updated	when	the	social	data	changes.

Document	security

Darwino	implements	multi-level	security.	You	can	assign	security	to	the	Server	object;
you	can	control	who	can	and	cannot	access	the	server.	At	the	database	level,	you	can
assign	an	ACL.	In	the	ACL,	you	can	define	who	can	access	the	database,	manage	the
database,	read	documents,	create	documents,	delete	documents,	and	edit	documents.
At	the	Document	level,	you	can	maintain	a	list	of	users	who	can	read	or	read/write	the
document,	within	the	limits	defined	by	the	ACL.	For	example,	if	a	user	is	granted	only
Read	access	to	the	database	via	the	ACL,	they	will	be	limited	to	reading	a	given
document	even	if	the	document-level	security	is	set	to	allow	Edit	rights.

UNID
Documents	have	two	identifiers:	the	UNID	and	the	docID.	The	UNID	is	a	string	provided
either	by	the	API	when	creating	the	document	or,	if	it’s	empty,	it	is	generated
automatically	by	the	system.	A	UNID	must	be	unique	per	store;	this	is	enforced	by	a
database	unique	index.	When	there	are	two	replicas,	for	example	one	on	the	server	and
one	on	a	mobile	device,	the	UNIDs	will	match.

Note:	The	parentID	is	used	to	identity	the	document’s	parent.	It	is	the	UNID	of	the
parent.	Sync	Master	documents	are	also	identified	by	their	UNIDs.

docID
The	docID	is	an	integer	that	is	unique	inside	the	database.	It	is	generated	by	the	system;
you	cannot	specify	it	when	you	create	the	document,	and	it	cannot	be	changed.	Being
an	integer	makes	it	much	more	efficient	in	database	operations	than	a	string	such	as	the
UNID.

However,	the	docID	is	not	universal;	it	won’t	be	the	same	in	two	different	replicas.
Because	of	this,	you	should	not	store	it	for	programmatic	use	and	try	to	rely	on	its	always
applying	to	that	document.	docIDs	are	used	internally	because	in	the	database	each

Concepts

40

document	maps	to	a	set	of	relational	tables;	the	relations	between	these	tables	are
expressed	most	of	the	time	through	the	docID	because	it’s	much	more	efficient	than	the
UNID.	It	is	also	easier	and	faster	to	programmatically	manipulate	large	lists	of	integers.

Concepts

41

Darwino	DB	API

Defining	and	deploying	the	database
A	Darwino	database	is	actually	a	set	of	tables	within	a	relational	database.	The	schema
of	these	tables	does	not	depend	on	the	Darwino	application.	The	schema	is	defined	by
Darwino,	and	always	remains	the	same	for	each	database;	only	the	table	names	depend
on	the	database	name.	This	is	important	because	in	some	organizations	altering	tables’
schema	is	strictly	controlled.	Policy	may	require	that	a	new	DDL	be	submitted	for	the
administrator	to	apply.	With	Darwino,	no	new	table	definitions	are	necessary…	UNLESS
you	want	to	add	additional	indexes.	See	Optimizing	the	database	for	details	on	defining
additional	indexes.

Configuring	the	database	using	managed
beans
There	are	two	very	important	points	in	the	Darwino	philosophy	here.

The	first	is	that	Darwino	is	built	in	layers,	and	you	pick	the	the	layer	you	want	to	use.	It’s
better	and	more	effective	when	you	pick	the	highest-level	one.

The	second	is	that	there	is	nothing	that	is	hard-coded.	Everything	is	provided	by
extension	points.	Extension	points	can	rely	on	managed	beans.	For	example,	the
connection	to	the	database	is	defined	through	beans.	But	this	is	not	the	only	way	to
define	your	connection.	There	is	an	extension	point	for	defining	your	connection,	and
one	default	implementation	of	the	extension	point	is	looking	for	beans.	Everything	in
Darwino	is	built	upon	extensions,	and	to	find	the	extensions	there	is	the	notion	of	a
plugin.	A	plugin	is	a	class	that	can	be	provided	by	your	application	or	by	a	library	and
that	adds	implementation	for	extensions.	Extensions	can	be	contextual	to	a	platform	or
not.	For	example:	the	location	where	managed	beans	are	found	is	provided	by	an
extension	point,	because	on	a	mobile	device	you	won’t	find	the	beans	at	the	same	place
as	on	a	J2EE	server.	On	the	server,	this	is	done	via	the	J2eePlatform.java	plugin.

See	Services	and	Extensions	for	more	information	on	plugins.

Defining	and	deploying	the	database

42

Darwino	DB	API

Documents	and	CRUD	operations
It	is	possible	to	perform	create,	read,	update,	and	delete	operations	on	documents.

At	the	base,	the	Darwino	API	is	a	Java	API.	There	is	also	a	JavaScript	API	which	is	a
JavaScript	flavor	of	the	Java	API,	and	there	are	the	REST	services.

You	can	load	and	create	documents	either	from	the	database	or	from	the	store.
Remember	that	the	UNID	is	unique	per	store	and	the	DocID	is	unique	per	database.

//	Create	documents

Document	d1	=	store.newDocument();	d1.save();

Document	d2	=	store.newDocument();	d2.save();

Document	d3	=	store.newDocument();	d3.save();

//	Read	a	document

Document	doc	=	store.loadDocument("1000");

s	+=	">>	Document\n";

s	+=	"		Unid:	"+doc.getUnid()+"\n";

s	+=	"		Id:	"+doc.getDocId()+"\n";

s	+=	"		Json:	"+doc.getJsonString(false)+"\n";

_formatText("{0}",s);

//	Update	a	document

JsonObject	json	=	(JsonObject)doc.getJson();

json.put("NewField","This	is	a	new	field");

json.put("field1","This	is	an	update	field	-	Previous	was:	"+json.getString("field

1"));

doc.save();

//	Delete	documents

//	Call	remove()	from	the	Document	object

d1.deleteDocument();

//	Call	delete()	from	the	Store,	using	a	UNID

store.deleteDocument(d2.getUnid());

//	Call	delete()	from	the	Database,	using	a	DocID

store.getDatabase().deleteDocumentById(d3.getDocId());

When	loading	an	existing	document,	there	are	a	number	of	options	you	can	pass.

Documents

43

Document	doc	=	store.loadDocument(unid,	options);	//	options	is	an	int.

Document	loading	options	(these	are	ORed):

DOCUMENT_NOREADMARK	-	This	will	load	the	document	but	not	mark	it	as	read.
Normally,	the	read	mark	is	checked	when	using	the	loadDocument()	method,	but
not	when	the	document	is	accessed	via	a	query.	Examples	of	when	you	might	want
to	leave	the	read	mark	untouched	include:

when	it	is	a	background	process	loading	the	document,	and	thus	the	user	is	not
personally	reading	the	document
when	there	is	no	solid	reason	to	mark	the	document	read,	and	you	want	to	save
the	database	write	that	marking	the	flag	entails

DOCUMENT_CREATE	-	By	default,	when	you	attempt	to	load	a	document	that
does	not	exist,	you	will	get	an	exception.	If	you	pass	this	flag,	then	if	the	document
does	not	exist	a	document	will	be	created	in	memory	and	no	exception	will	be
thrown.	The	new	document	will	not	appear	in	the	database	until	you	explicitly	save
it.	This	is	particularly	useful	when	using	a	remote	connection,	as	it	saves	a	server
connection.	It	acts	as	LoadOrCreate().

There	are	also	options	available	when	saving	a	document:

SAVE_NOREAD	-	When	a	document	is	being	created	(and	ONLY	then),	will	not
mark	the	document	as	read.	By	default,	a	new	document	is	marked	as	read	by	the
user	who	created	it.
SAVE_NOTOUCH	-	It	is	possible	to	specify,	at	the	store	level,	that	parent	or	sync
master	documents,	and,	optionally,	their	indexes	and	all	progenitor	documents,
should	be	marked	as	modified	("touched")	when	one	of	their	dependent	documents
is	modified.	Saving	with	the	SAVE_NOTOUCH	option	will	prevent	the	touch	actions
from	occuring.
SAVE_CHECKCONFLICT	-	If	enabled,	the	save	will	not	occur	and	an	exception	will
be	raised	if	the	document's	last	modification	date	doesn't	match	what	it	was	when
the	document	was	loaded.	This	would	be	the	case	if	the	same	document	has	been
saved	by	a	different	process/user	after	your	code	opened	it.

Delete	document	options:

DELETE_ERASE	-	When	replication	is	enabled	for	a	database,	deleting	a	document
will,	by	default,	create	a	deletion	stub	to	represent	a	deleted	document	so	that	the
document	will	be	deleted	in	replicas	of	the	database	during	replication.	Using	the
DELETE_ERASE	flag	during	deletion	will	delete	the	document	without	leaving	a

Documents

44

deletion	stub.	Thus,	the	deletion	will	not	replicate	out,	and	the	document	will	return
the	next	time	the	database	replicates	with	a	copy	of	the	database	in	which	the
document	exists.
DELETE_NOTOUCH	-	Like	SAVE_NOTOUCH,	this	will	leave	related	documents
un-notified	of	the	deletion.
DELETE_CHILDREN	-	The	option	will	recursively	delete	all	descendents	of	the
document	along	with	the	document	itself.	Since	these	deletions	are	performed
within	a	transaction,	it's	all-or-nothing.	You	will	not	be	left	with	a	partially-intact
document	family.	Also,	they	are	all	done	within	the	same	network	process,	so
there's	no	wasteful	back-and-forth	that	would	be	required	if	the	deletes	were	done
one	at	a	time.
DELETE_SYNCSLAVES	-	This	is	like	DELETE_CHILDREN,	but	applies	when	you
are	deleting	a	sync	master	document.	It	and	all	of	its	sync	slaves	will	be	deleted.

Transactions
To	do	CRUD	operations,	you	get	the	session	and,	from	that,	the	database	and	store,
and	there	you	create,	read,	update,	and	delete	documents.	As	long	as	you’re	using	the
Java	API	locally,	you	can	execute	a	series	of	operations	within	a	transaction.	At	the
session	level,	you	can	query	whether	the	session	supports	transactions.	If	it	does,	you
can	start	a	transaction,	perform	a	set	of	operations	on	documents,	and	then	roll	back	the
changes	if	needed.

A	transaction	must	be	started	(startTransaction())	and	ended	(endTransaction()).	To	get
the	transaction	committed,	one	must	call	commitTransaction()	in	between	start	and	end.
Failing	to	do	so,	or	explicitly	calling	abortTransaction(),	will	result	in	no	changes	being
committted	to	the	database.

//	Simple	transaction

session.startTransaction();

try	{

				Document	d1	=	store.newDocument();	

				id1	=	d1.getUnid();	

				d1.save();

						session.commitTransaction();

}	finally	{

				session.endTransaction();

}

Documents

45

Moreover,	transactions	can	be	stacked.	In	order	to	be	committed,	all	the	sub-
transactions	of	the	main	transaction	must	be	committed,	else	the	entire	top	transaction
will	roll	back.

session.startTransaction();

try	{

				Document	d1	=	store.newDocument();	

				id1	=	d1.getUnid();	

				d1.save();

				//	Aborting	a	nested	transaction	will	abort	the	whole	transaction!

				session.startTransaction();

				try	{

								Document	d2	=	store.newDocument();	

								id2	=	d2.getUnid();	

								d2.save();

								session.abortTransaction();

				}	finally	{

								session.endTransaction();

				}		

				session.commitTransaction();

}	finally	{

				session.endTransaction();

}

Access	to	the	documents
There	are	three	ways	in	Darwino	to	access	documents:

The	Java	API.	This	API	talks	directly	to	the	database	whenever	it	is	a	JDBC-based
database,	or	is	SQLite.
REST	services,	which	operate	on	top	of	the	Java	API.	The	set	of	REST	services	in
Darwino	supports	everything	the	Java	API	allows	in	regard	to	document	operations
EXCEPT	transactions.	Because	REST	is	stateless,	transactions,	which	are	stateful,
cannot	be	supported.
REST	services	wrapped	for	particular	languages.	Darwino	provides	two	wrappers	to
assist	in	REST	service	work:	a	Java	wrapper	and	a	JavaScript	wrapper.	The	Java
wrapper	is	the	Java	API,	but	instead	of	being	implemented	to	deal	directly	with	the
JDBC	driver	locally,	it	deals	with	the	REST	services.	Nonetheless,	it	is	the	exact
same	API.	The	only	difference	is	how	you	get	access	to	the	session.	The	JavaScript
wrapper	is	intended	for	use	in	a	JavaScript	environment	such	as	a	browser	or	a
server-side	JavaScript	environment	like	node.js.	In	the	future	there	could	be	other

Documents

46

wrappers,	just	as	PHP	bindings,	a	Ruby	binding,	etc…

Access	to	the	JSON	content
The	JSON	document	in	Darwino	is	more	than	a	JSON	object;	it	has	several
components:

JSON	content	–	typically	a	JSON	object,	but	it	could	also	be	a	JSON	array.	It	is
unusual	for	it	to	be	anything	other	than	a	JSON	object,	because	only	the	JSON
object	supports	use	of	system	data	that	can	be	of	use	to	Darwino.
optionally,	attachments
metadata	–	For	example,	the	UNID	and	the	docID,	modification	date	and
modification	user,	as	well	as	tags	and	other	social	data,	and	security-related	fields
such	as	READER	and	EDITOR	fields	which	define	which	people	and	groups	can
access	the	document.	These	metadata	are	not	modifiable	manually	by	normal
operations.
system	data	that	can	be	modified	–	For	example,	a	list	of	tags.	System	fields	are
actually	fields	in	the	root	of	the	JSON	content	object,	but	their	names	start	with	an
underscore.
optionally,	transient	property	fields	that	can	contain	data	we	want	to	pass	to
document	events	but	never	want	to	store	in	the	document.	They	are	never	saved.
They	can	be	set	and	read	at	the	document	level,	but	they	are	never	persistent.	A
typical	use	of	this	is	when	you	want	to	pass	information	to	an	event	handler	without
having	this	information	remain	part	of	the	document.

JSON	content	access	methods

Methods	are	provided	for	accessing	the	JSON	content	in	all	data	types.	They	all	take	a
String	as	their	only	parameter,	and	return	the	value	of	the	requested	JSON	field,
assuming	that	the	content	is	a	JSON	object:

getString()
getInt()
getLong()
getDouble()
getBoolean()
getDate()

Documents

47

These	methods	cannot	access	hierarchical	data,	but	they	are	very	convenient	for
accessing	fields	that	are	at	the	root	of	the	document.

In	addition,	there	is	a	method	for	executing	JSONPath	(XPath	for	JSON)	expressions.
JSONPath	simplifies	the	extraction	of	data	from	JSON	structures.	It	permits	dot	notation
and	bracket	notation,	and	allows	wildcard	querying	of	member	names	and	array	indices.
It	is	documented	here.	JSONPath	expressions	can	be	executed	in	Darwino	via	the
jsonPath	method:

jsonPath(Object	path)

Managing	attachments
Every	document	can	have	a	set	of	attachments.	The	methods	for	working	with
attachments	are	at	the	document	level.	Working	with	attachments	is	optimized;	the
attachments	are	loaded	only	when	needed.	When	you	create	or	update	an	attachment,
nothing	actually	happens	until	you	save	the	document.	If	the	document	save	is	part	of	a
global	transaction,	then	the	work	is	postponed	until	the	transaction	is	executed.

Document	methods	for	Attachments:

getAttachmentCount()	returns	the	number	of	Attachments
getAttachments()	returns	an	array	of	Attachments
getAttachment()	returns	the	Attachment
attachmentExists()	–	returns	a	boolean
createAttachment(String	name,	Content	content)	–	populates	the	content	of	the
Attachment	with	the	specified	Content	object,	which	can	be	Base64Content,
ByteArrayContent,	ByteBufferContent,	EmptyContent,	FileContent,
InputStreamContent,	or	TextContent.
deleteAllAttachments()	–	removes	all	Attachments

Attachment	methods:

getName()
getLength()
getMimeType()	returns	the	MIME	type	of	the	content.	If	it	wasn’t	set	when	it	was
created,	the	system	will	base	the	returned	value	on	the	extension	of	the
attachment’s	filename.	If	there	is	no	interpretable	extension,	it	will	assume	binary.
update(Content	content)	updates	the	content	of	the	attachment
getContent()	returns	the	content	of	the	attachment	as	a	Content	object.

Documents

48

http://goessner.net/articles/JsonPath/

getInputStream()	returns	the	content	of	the	attachment	as	an	InputStream
There	are	three	“readAs”	methods	intended	for	convenience,	but	are	not	meant	to
be	used	with	large	attachments.	They	are	not	as	efficient	as	working	with	an
InputStream:	--	readAsBase64()	--	readAsString()	--	readAsString(String	encoding)

The	Content	object	has	four	methods:

getMimeType()
getLength()
createInputStream()
copyTo(OutputStream	os)	A	Content	object	is	an	accessor	to	the	data;	it	is	not	the
data	itself.	This	means	that	when	creating	attachments,	the	Content	object	does	not
actually	load	the	data	into	memory	until	the	document	is	being	saved.	Until	then,	it
merely	points	to	the	data.	This	is	an	important	performance	consideration.

Documents

49

Darwino	DB	API

Cursors	and	queries
Cursors	facilitate	the	selection	of	document	sets	from	the	database,	and	the	extraction	of
data	from	the	selected	documents.	You	specify	what	you	want	to	extract,	and	then	you
process	the	result.	When	you	process	the	result,	there	is	only	the	current	entry	in
memory;	it	doesn’t	load	everything	into	memory	and	iterate	through	that	set.	The	cursor
lets	you	step	through	the	results	one	by	one.

Note:	A	cursor	is	forward	only.	You	cannot	browse	the	resultset	backwards.

A	cursor	consumes	a	database	connection;	thus,	the	connection	has	to	be	released
when	it's	done.	To	avoid	reliance	on	the	intermittent	garbage	collector,	Darwino	provides
a	callback	to	the	cursor.	The	cursor	calls	this	cursor	handler	for	every	result.	For
example,	when	iterating	through	a	result	set,	you	call	find(),	passing	a	CursorHandler.
The	CursorHandler	has	one	method,	which	is	handle(),	which	handles	the	CursorEntry.
The	cursor	is	allocating	the	database	connection,	executing	the	SQL	query,	calling	the
CursorHandler	for	every	result,	and	then	closing	and	recycling	the	database	connection.

There	are	methods	designed	for	dealing	with	the	subset	of	documents	that	are
represented	in	the	collection.	For	example:

deleteAllDocuments(int	options)	–	Will	delete	all	of	the	documents	not	by	iterating
through	and	deleting	each	one-by-one,	but	instead	will	generate	a	SQL	query	to	do
the	job	in	one	fell	swoop.
markAllRead(boolean	read)	and	markAllRead(boolean	read,	String	username)	will
mark	the	cursors	documents	as	read,	either	by	the	current	user	of	by	a	particular
username.

Query	and	extraction	language
When	searching	for	documents	in	a	database,	index,	or	cursor,	there	are	many	options
available.	For	example,	searches	can	be	based	on	key,	a	range	of	keys,	partialkey,
parentid,	unid,	tags,	and	ftsearch.	Since	it	is	possible	to	force	a	unid's	value	in	Darwino,
using	the	unid	as	a	key	is	a	particularly	efficient	basis	for	searches.

Cursors	and	Queries

50

When	we	use	the	term	"key",	it	means	the	unid	when	the	cursor	is	querying	a
store,	or	the	key	when	the	cursor	is	querying	an	index.

Search	document	by	key

		public	Cursor	key(Object	key)	throws	JsonException;	

Search	document	using	a	partial	key,	meaning	document	with	a	key	starting	with	a
specified	string:

		public	Cursor	partialKey(Object	partialKey)	throws	JsonException;	

Search	a	range	of	documents.	When	'exclude'	is	not	specified,	then	it	means	false
(the	document	with	the	key	is	included).	You	typically	specify	a	start	and	an	end,
although	omitting	the	start	means	from	the	beginning,	while	omitting	the	end	means
up	to	and	including	the	last	document.

		public	Cursor	startKey(Object	startKey)	throws	JsonException;	

		public	Cursor	startKey(Object	startKey,	boolean	excludeStart)	throws	JsonExc

eption;	

		public	Cursor	endKey(Object	endKey)	throws	JsonException;	

		public	Cursor	endKey(Object	endKey,	boolean	excludeEnd)	throws	JsonException

;	

Select	by	parent	UNID

		public	Cursor	parentUnid(String	parentId)	throws	JsonException;	

		public	Cursor	parent(Document	parent)	throws	JsonException;	

Select	by	tag

		public	Cursor	tags(String...	tags)	throws	JsonException;	

Select	based	on	the	doc	id	or	the	UNID

		public	Cursor	id(int	id)	throws	JsonException;	

		public	Cursor	unid(String	unid)	throws	JsonException;	

Select	using	a	full	text	search	expression

		public	Cursor	ftSearch(String	search)	throws	JsonException;	

Cursors	and	Queries

51

These	methods	are	fast	and	efficient,	but	may	not	always	provide	the	search	term
flexibility	required	by	an	application.	Darwino's	query	and	extraction	language	allows	for
queries	based	on	complex	criteria.

Select	using	the	query	language

		public	Cursor	query(String	query)	throws	JsonException;	

The	JSON	query	language	has	three	variants;	which	you	use	depends	on	where	and
how	you	want	to	use	it:

1.	 Query	documents.	In	this	case,	it's	a	query	condition.	The	result	of	a	query	that	is
applied	to	a	document	is	true	or	false.	Does	the	document	match	the	condition	or
not?	Does	field	"State"	equal	"New	York"?	Is	the	field	"Price"	greater	than	$100?
The	query	condition	is	applied	to	every	document	in	the	database.	The	cursor	will
select	only	the	documents	for	which	the	condition	is	true.

2.	 Data	extraction.	A	document	returned	by	a	query	is	a	piece	of	JSON.	You	may	want
to	transform	this	JSON,	for	example	if	it	contains	a	hundred	fields	and	you're
interested	in	only	three	of	them.	You	don't	want	to	download	to	a	mobile	client	the
entire	document	if	most	of	it	is	not	needed.

3.	 Calculating	aggregation.	When	you	have	a	cursor	that	is	sorted	by	one	or	more
keys,	you	can	categorize	based	on	the	sorted	values.	The	categorization	groups	the
documents,	and	then	you	can	calculate	aggregate	values	for	the	groups.

When	a	cursor	runs,	it	calls	the	cursor	handler	with	all	of	the	cursor	entries.	In	the	cursor
entry	are	the	key	and	the	value,	accessible	via	getKey()	and	getValue().	What	these	two
represent	depends	on	the	source	of	the	cursor.	A	cursor	executed	on	a	store	will	have
documents	as	its	result,	the	key	will	be	the	unids	of	the	documents,	and	the	value	will	be
the	JSON	of	the	documents.	If,	instead,	the	cursor	was	executed	on	an	index,	then	the
key	will	be	the	key	of	the	index,	and	the	value	will	be	either	the	value	that’s	stored	in	the
index	or	the	JSON	value	from	the	corresponding	documents,	depending	on	an	option
applied	to	the	cursor.

For	details	on	the	query	language,	see	Appendix	3.	The	Query	Language.

Executing	a	query
A	cursor	is	created	at	either	the	store	or	the	database	level.	The	store’s	openCursor()
method	returns	a	cursor	on	which	you	then	apply	the	selection	condition.	The	Cursor
methods	return	the	cursor	itself,	which	means	that	the	methods	can	be	stacked.	For

Cursors	and	Queries

52

example:

Cursor	c	=	store.openCursor().ftSearch(“version”).orderByFtRank().range(0,5)

This	will	perform	a	fulltext	search	on	“version”,	order	the	result	by	rank,	and	return	the
first	five	entries.

Cursor	Options

When	executing	a	cursor,	there	are	options	available	that	control	the	behavior	of	the
query.

DATA_DOCUMENT:	Instead	of	returning	the	value	of	the	column,	the	query	will
return	the	document	itself.
DATA_CATONLY:	Only	the	category	rows	will	be	extracted	from	the	query,	and	not
the	ones	related	to	documents.	If	no	categories	are	defined	for	the	query,	then	an
error	will	be	raised.
DATA_NOVALUE:	The	'value'	of	each	row	entry	will	be	null,	instead	of	containing	a
JSON	document.	This	is	an	optimization	that	prevents	the	actual	extraction	being
done	when	not	needed.	This	is	useful	if,	for	example,	you're	only	interested	by	the
document	meta-data	(unid,	...)	or	the	hierarchy.
DATA_MODDATES:	Returns	the	creation	and	last	modification	dates	of	every
document	matched.
DATA_READMARK:	Returns	a	flag	for	every	matching	document	that	indicates
whether	it	has	read	by	the	user	executing	the	query.
DATA_WRITEACC:	Returns	a	flag	for	every	matching	document	indicating	whether
the	user	executing	the	query	is	authorized	to	edit	the	document.
HIERARCHY_SQL:	By	default,	Darwino	will	utilize	the	underlying	database's	ability,
if	available,	to	perform	recursive	queries	(CTE,	or	Common	Table	Expressions).
This	option	will	disable	this	support,	forcing	the	runtime	to	perform	the	queries
exhaustively,	in	the	case	where	the	built-in	recursive	query	feature	is	deemed
unreliable	or	inconsistent	in	the	particular	database.	This	is	a	potentially	expensive
option.
QUERY_NOSQL:	The	option	disables	Darwino's	default	behavior	of	generating
optimized	SQL	queries,	forcing	the	runtime	to	do	the	query	manually.	Like
HIERARCHY_SQL,	this	is	potentially	a	very	expensive	choice	and	should	be	used
only	when	absolutely	necessary.
RANGE_ROOT:	When	a	query	is	using	skip	and	limit,	this	option	will	cause	the
query	to	consider	only	the	root	elements	when	determining	the	skip	and	limit	values.

Cursors	and	Queries

53

By	default,	category	and	child	entries	are	included	when	calculating	the	skip	and	the
limit;	this	option	overrides	that	default.
TAGS_OR:	By	default,	when	querying	by	tag	and	specifying	multiple	tags,	ALL	of
the	tags	must	match	for	documents	to	be	selected	(the	default	is	an	"AND");	when
TAGS_OR	is	specified,	then	ANY	matching	tag	will	allow	documents	to	be	selected.

Document	Hierarchies	in	Cursors

The	query	engine	natively	understands	Darwino	document	hierarchies,	and	the	cursor
takes	advantage	of	that	by	allowing	cursor	queries	to	return	not	only	the	matching	root
documents	but	also	their	associated	child	documents.	In	other	words,	a	cursor	query	can
test	for	values	in	the	root	documents,	and	then	return	the	matching	root	documents
along	with	their	children,	regardless	of	whether	the	children	match	the	query	condition	or
not.	The	CursorEntry	objects	returned	by	the	cursor	will	have	an	indentLevel	property
(an	int)	that	identifies	where	they	lie	in	the	hierarchy,	with	0	indicating	a	root	document.

By	default,	when	you	query	documents	you	get	back	a	flat	list	of	documents;	there	is	no
hierarchy.	If	you	want	to	include	the	children	of	the	selected	documents,	you	have	to
explicitly	specify	that	you	want	their	children	as	well,	up	to	a	given	level.	By	default,	the
hierarchical	level	is	zero.	If	you	specify	hierarchical(1),	then	you	will	get	the	queried
documents	plus	their	direct	descendents.	Specifying	hierarchical(2)	would	return	all	of
those,	plus	the	grandchildren.

The	range()	method

The	range()	method,	given	a	number	to	skip	and	a	number	to	return,	will	return	a	subset
of	a	cursor’s	entries,	and	can	be	controlled	via	the	cursor	options	(by	specifying
RANGE_ROOT)	to	apply	the	skip	and	limit	parameters	only	to	the	root	documents,	and
to	then	return	all	associated	child	documents,	without	regard	to	the	limit	parameter.

Cursor	Sorting	Options

orderBy(String…fields)	sorts	cursor	results	by	field.	This	can	be	an	extracted	field	(for
example,	@myfield)	or	a	system	field	(such	as	_unid	or	cuser).	If	the	RDBMS	supports
JSONQuery,	then	a	JSON	reference	can	be	used,	such	as	a	JSON	field	name	or	a
direct	path	to	a	JSON	field.	Optionally,	the	sort	order	can	be	specified	by	appending	a
space	and	the	text	“asc”	or	“desc”	to	each	field/path	value.	For	example:
.orderBy(“@state	desc”,	“unid”)	will	sort	by	state	descending,	then	by	unid	ascending
(that	being	the	default).

Cursors	and	Queries

54

The	fulltext	rank	can	also	be	used	for	specifying	the	order	in	a	cursor,	by	use	of	the
orderByFtRank()	method.	This	is	a	short	cut	to	.orderBy("_ftRank").	orderByFtRank()	is
always	descending,	with	the	best	best	match	first.

The	ascending()	and	descending()	global	options	apply	to	the	orderBy()	method	results,
but	are	overriden	by	orderBy()	when	"asc"	or	"desc"	is	specified.

If	no	order	is	specified,	and	if	there	is	no	index,	documents	will	appear	in	a	cursor
ordered	by	unid.	When	there	IS	an	index,	the	default	order	is	the	index	key.

Browsing	the	Entries:

There	are	two	ways	to	execute	a	cursor:

Call	find(),	passing	a	CursorHandler.	It	will	execute	the	query,	returning	the	entries
one-by-one	and	calling	the	CursorHandler	for	each.

				final	StringBuilder	b	=	new	StringBuilder();

				c	=	store.openCursor().range(0,10);

				c.find(new	CursorHandler()	{

						public	boolean	handle(CursorEntry	e)	throws	JsonException	{		

								b.append("		"+e.getString("firstName")+"	"+e.getString("lastName")+"\n");

								return	true;

						}

				});

Call	findOne(),	if	you	are	sure	there	will	be	only	one	entry	returned,	or	if	you	are
interested	only	in	the	first.	There	is	no	need	to	pass	the	callback	Cursorhandler.

				c	=	store.openCursor();

				CursorEntry	e	=	c.findOne();

There	are	equivalent	methods,	different	in	that	they	extract	the	document	object,
allowing	it	to	be	updated	and	saved	back	to	the	database.	Extracting	a	whole	document
has	an	extra	cost	compared	to	just	loading	the	cursor	entries	(but	it	is	still	faster	than	the
dual	steps	of	getting	the	entry	and	then	loading	the	document).

The	count()	method	will	return	the	number	of	entries	in	the	cursor.	Behind	the	scenes,
Darwino	executes	a	SELECT	count(*)	on	the	table,	which	can	be	costly	on	large	data
sets.

The	countWithLimit()	method	behaves	similarly,	but	uses	the	limit	parameter.	If	the
actual	count	is	greater	than	the	specified	limit,	then	the	limit	is	returned.

Cursors	and	Queries

55

Categorization	and	Aggregation

Categorization	is	a	means	to	group	documents,	and,	secondarily,	to	calculate	or
aggregate	on	the	groups.	Categorization	organizes	documents	in	groups	based	on
shared	key	values,	determined	by	the	orderBy()	of	a	cursor,	in	the	Darwino	API.
Categorization	is	completely	dynamic;	being	based	on	the	sort	order,	which	is	not	fixed,
categorization	can	be	calculated	on	the	fly.

There	can	be	up	to	as	many	categories	as	there	are	sorted	fields.	If	you	have	four	levels
in	the	sorting,	then	you	can	categorize	on	the	first,	or	the	first	and	second,	or	the	first
three,	and	so	on.	When	categorizing,	it	isn't	required	that	you	start	with	the	first	sorted
field;	you	can	start	with	a	subsequent	sorted	field	instead.	However,	once	you've	started
categorizing	on	multiple	fields	you	cannot	skip	a	sorted	field	and	continue.	That	is	to	say,
it	is	possible	to	categorize	on	the	second,	third,	and	fourth	sorted	fields,	but	not	on	just
the	second	and	fourth.

To	calculate	aggregate	data,	such	as	average,	minimum,	and	maximum,	pass	an
aggregate	query	to	the	cursor.	For	example:

Cursor	c	=	store.openCursor()

				.query("{Count	{$count:	"@manufacturer”},	Sum:	{$sum:	“@released”},

				Avg:	{$avg:	“@released”},	Min:	{$min:	“@released”},	Max:	{$max:	“@released”}})

;

In	this	example,	we	count	how	many	times	the	field	"@manufacturer"	is	not	null	for	all	of
the	documents	belonging	to	each	category	and	we	return	the	result	as	"Count".	For
"Sum",	we	calculate	the	sum	of	the	field	"@released"	for	every	document	in	the
category,	and	return	the	result	as	"Sum".	We	also	calculate	the	average	of	the
"@released"	field	as	"Avg",	and	we	select	and	return	the	minimum	and	maximum	values
for	that	field	as	well.

Categorization	adds	entries	to	the	result	to	define	the	categories.	If	an	entry	has	a
"category"	value	of	true,	then	it	is	not	a	document...	it	is	a	category	entry.	The
"categoryCount"	value,	a	number,	contains	the	level	of	categorization	for	the	entry	in	a
multi-category	result:	top	level	would	be	categoryLevel	of	1,	the	next	level	down	would
be	categoryLevel	of	2,	and	so	on.

The	.categories(int	nCat)	method	takes	as	its	parameter	the	number	of	category	levels	to
apply,	based	on	the	orderBy()	fields.

Cursors	and	Queries

56

When	categorizing,	it	is	possible	to	request	that	the	documents	not	be	extracted	in	the
cursor;	in	this	case,	the	result	will	consist	only	of	the	category	entries.

Another	option	is	to	extract	categories	while	skipping	the	highest	level	categories.	For
example,	extract	two	categories,	but	start	at	the	second-level	category,	returning	levels
two	and	three.

Optimizing	queries
The	query	language	is	robust,	with	a	lot	of	operators,	and	is	optimized	for	the	underlying
database	system.	It	will	attempt	to	use	only	native	database	functions	when	constructing
its	SQL;	if	necessary	functions	are	not	supported	by	the	database,	it	will	still	use	those
that	ARE	supported	for	parts	of	the	query.	For	example,	if	there	is	an	“AND”	in	the	query,
and	only	one	condition	is	directly	supported	by	the	database,	the	query	language	will
execute	that	part	of	the	query	first	and	only	then	iterate	through	the	results	one-by-one.

The	query	language’s	API	allows	the	cursor	to	be	checked	to	determine	whether	a
particular	query	is	supported	by	the	database.	It	compiles	the	query	and	answers
whether	it	can	generate	SQL	for	the	query,	or	it	can	generate	only	partial	SQL,	or	it
cannot	generate	SQL	at	all.

Cursors	and	Queries

57

Darwino	DB	API

Accessing	and	storing	social	data
There	is	a	set	of	social	data	that	can	be	associated	with	any	document.	There	are	three
kinds	of	social	data:

Comments:	Darwino	creates	a	default	store	for	the	comment	data.	Keeping
comments	out	of	the	documents	themselves	prevents	unnecessary	updates	to	the
documents	which	then	must	replicate	and	could	result	in	conflicts.	Moreover,
comments	can	contain	full	JSON	content	with	attachments.
Tags:	The	tags	are	stored	as	an	array	in	the	_tags	field	in	the	document.	The	tags
can	be	queried,	and	the	store	can	return	a	list	of	tags	that	can	be	used,	for	example,
to	create	a	tag	cloud.

Tip:	Private	tags,	visible	only	to	their	creator,	can	be	stored	as	read-protected
response	documents	associated	with	the	document	being	tagged.	Because	they
are	read-protected,	they	will	be	private	to	that	user.	Because	the	store’s	list	of	tags
respects	this	security,	only	the	private	tag’s	creator	will	see	such	a	private	tag	in	a
tag	cloud.

User-dependent	values,	which	are	handled	at	the	store	level:	These	don’t	require
that	the	document	be	loaded	for	them	to	be	applied,	and	they	are	stored	externally
to	the	documents	in	order	to	avoid	unnecessary	document	modification,	replication
conflicts,	and	excessive	data	in	the	documents	(there	can	be	a	lot	of	ratings	and
read	flags):

--	Ratings:	With	the	rate()	method,	a	document	is	assigned	an	integer	value
associated	with	a	user.	Appropriately,	only	one	rating	per	document	per	user	is
stored.	There	are	three	methods	for	retrieving	rating	data:

getRate()	–	Given	a	unid	and	userName,	returns	that	user’s	rating	for	the
document
getRateAvg()	–	Given	a	unid,	returns	the	average	rating	from	all	users	for	the
document
getRateSum()	-	Given	a	unid,	returns	the	sum	of	all	ratings	for	the	document,
for	example	to	count	votes	where	ratings	would	be	defined	by	the	application	to

Accessing	and	Storing	Social	Data

58

range,	say,	from	-1	to	1.
--	Sharing:	With	the	share	method,	a	unid	and	username	sets	a	Boolean	flag
indicating	whether	the	document	has	been	shared	by	that	user.	It	is	similar	in
concept	to	a	Facebook	“like”.	Two	methods	exist	to	interrogate	shares:

isShared()	–	Returns	a	Boolean	indicating	whether	the	document	is	shared	by	a
specified	username
getShareCount()	–	returns	the	number	of	shares	by	all	users	as	an	integer

--	Read:	While	not	specifically	social,	the	read	flag	is	functionally	similar	to	the	other
social	data.	At	the	store	level,	the	readMarkEnabled	option	enables	the	auto-
flagging	of	documents	as	being	read	when	they	are	loaded.	This	applies	only	to
documents	that	are	actually	loaded;	their	being	included	in	a	query	result	is	not
sufficient	to	mark	them	as	read.	A	document	load()	option	can	also	prevent	the	flag
from	being	set,	when	necessary.

There	are	three	methods	in	the	store	to	enable	manipulation	and	querying	of	the
read	flags:

isRead()	returns	the	read	value	for	the	specified	document	and	username
markRead()	-	Given	a	unid,	a	Boolean,	and	a	username,	sets	the	read	flag	for
that	document	and	user.
getReadCount()	–	returns	the	number	of	reads	for	the	specified	document.

Note:	Darwino	security	mechanisms	may	be	used	to	prevent	someone	from
updating	somebody	else's	data.

There	are	two	ways	to	access	this	social	data.	The	methods	at	the	store	level	require	the
unid	and	the	username,	in	addition	to	any	flags	being	set,	to	identify	the	document.	The
same	methods	are	available	in	the	Document	object,	where	they	do	not	require	those
two	identifying	parameters.	Which	set	of	methods	you	choose	will	depend	on	the
context.	If	you	have	the	document	loaded,	then	use	the	Document	methods,	if	just	for
simplicity.	If	you’re	in	a	view,	use	the	Store	methods	since	they	will	be	significantly	more
efficient	(they	will	not	require	loading	the	documents).

The	following	fields	are	available	in	the	query	condition:

shared
shareCount
rate
rateAvg
rateSum

Accessing	and	Storing	Social	Data

59

read
readCount

These	queries	are	generating	extra	database	requests.	For	performance	reasons,	it	will
be	better	to	store	these	values	into	extracted	fields,	or	within	an	index.	Then,	the	query
will	only	be	executed	when	the	document	is	saved.

This	social	data	can	be	used	in	extracted	fields	in	the	documents,	making	it	easy	to
create	indexes	based	on	their	values	for	querying	and	sorting.

Accessing	and	Storing	Social	Data

60

Darwino	DB	API

Registering	and	handling	events
At	the	Server	Object	level,	you	can	register	an	ExtensionRegistry.	This	registry	provides
a	set	of	functions	–	currently	a	set	of	five:

BinaryStore:	When	Darwino	stores	attachments,	they	can	be	stored	either	inside	the
database	or	apart	from	the	database.	The	BinaryStore	is	an	interface	that	facilitates
storing	the	attachments	outside	of	the	database	by	providing	a	set	a	CRUD
methods.	The	attachments	can	be	stored,	for	example,	directly	in	the	file	system	or
in	a	CMS.
DocumentEvents:	When	an	operation	is	being	performed	on	a	document,	the
runtime	will	call	the	methods	in	the	DocumentEvents:

postNewDocument	–	called	right	after	a	document	has	been	created,	so	that
you	can,	for	example,	change	document	values.
postLoadDocument	–	called	right	after	a	document	has	been	loaded.
querySaveDocument–	called	immediately	before	a	document	has	been	saved.
It	is	possible	to	cancel	the	save	from	within	this	event	simply	by	throwing	an
exception.	The	exception	can	include	the	reason	for	the	save	cancelation.
postSaveDocument	–	called	immediately	after	a	document	has	been	saved.
queryDeleteDocument	–	called	before	a	document	is	deleted,	EXCEPT	when	a
group	of	documents	is	being	deleted.	Group	deletes	are	performed	directly	by	a
SQL	statement,	and	so,	for	performance	reasons	this	event	is	not	raised.
postDeleteDocument	–	called	after	a	document	delete,	except,	as	with
queryDocumentDelete,	when	a	group	of	documents	has	been	deleted.	In	such
a	case,	you	could	add	a	trigger	at	the	relational	database	level	to,	for	example,
log	the	deletion	in	a	queue	for	processing.

Note	that	these	events	are	also	raised	when	called	via	HTTP.

Transient	properties	set	at	the	document	level	can	be	accessed	from	within	these
events,	despite	the	fact	that	these	properties	are	never	saved.	This	can	be	used,	for
example,	by	the	calling	code	to	pass	information	to	the	save	event.

Registering	and	Handling	Events

61

SynchronizationEvents:	As	synchronization	is	taking	place,	this	set	of	events	will	be
raised,	allowing	customization	of	the	synchronization	actions.	Like	the
DocumentEvents,	code	here	can	manipulate	values	or	cancel	the	action	altogether.

queryCreateDocument
postCreateDocument
queryUpdateDocument
postUpdateDocument
queryDeleteDocument
postDeleteDocument
conflictAction	–	raised	when	the	runtime	has	detected	a	synchronization
conflict,	this	event	provides	information	about	the	conflict,	including	what
changed	in	the	source	document	and	what	is	in	the	target	document.	Code
here	will	return	a	ConflictAction,	which	will	be	one	of	the	following:	DEFAULT
(the	default	handler	should	be	applied),	SOURCE	(the	source	should	win),
TARGET	(the	target	should	win),	or	CUSTOM	(call	the	handleConflict	method,
where	the	conflict	can	be	handled	by	custom	business	logic.	For	example,	in	an
HR	application	where	several	people	interviewing	an	applicant	each	have
access	to	a	different	section	of	the	document.	In	this	case,	you	would	choose	to
merge	the	different	sections.)

FieldFunction:	Functions	used	when	extracting	fields	from	documents	or	computing
indexes	are	registered	here.

InstanceFactoryImpl:	A	database	can	have	multiple	instances,	each	with	its	own
security	configuration;	in	other	words,	there	is	per-instance	security.	That	instance
security	is	dynamic,	based	on	business	logic.

When	a	database	is	opened	for	a	particular	instance,	then	an	instance	object	is
created	in	memory	through	an	instance	factory.	Once	the	instance	factory	has	been
implemented	and	the	instance	is	created	based	on	the	database	and	the	instance
name,	the	contribute()	method	of	the	instance	is	the	mechanism	for	adding	roles
and	groups	to	the	user	context.

For	example,	the	ACL	of	a	database,	and	the	reader/writer	fields	in	the	documents,
may	specify	that	only	the	members	of	a	particular	group	may	have	access	to	the
data.	It	is	the	job	of	the	instance’s	contribute()	method	to	add	to	the	current	user
their	list	of	roles	and	groups;	this	list	is	determined	dynamically	depending	on
business	logic,	and	that	logic	is	free	to	make	use	of	any	directories	and	database
data	available	to	it.

Registering	and	Handling	Events

62

There	is	a	default	implementation	of	the	ExtensionRegistry	called
DefaultExtensionRegistry.	Use	this	to	associate	particular	document	event	handlers	with
specific	database	stores.	Once	you	create	an	instance	of	the	DefaultExtensionRegistry,
its	registerDocumentEvents()	method	can	be	used	to	define	specific	cases	of	the
document	events.	By	specifying	the	database	and	store,	you	define	which	document
events	you	want	to	override;	for	example	here	you	would	code	your	custom
querySaveDocument	event.

Public	class	AppDBBusinessLogic	extends	DefaultExtensionRegistry	{

				registerDocumentEvents(“<My	Database	Id>”,	“<My	Store	Id>”,	new	DocumentEvents

()	{

								@Override

								public	void	querySaveDocument(Document	doc)	throws	JsonException	{

								}

				});

}

You	can	register	events	globally,	and	at	the	database	level,	and	at	the	store	level.	If	an
event	is	registered	at	the	store	level,	that	is	one	that	will	be	called	for	documents	in	that
store.	If,	instead,	there	is	no	event	registered	at	the	store	but	there	is	one	registered	at
the	database,	then	the	database	registration	will	be	in	effect.	The	most-local	(most
precise)	registration	is	the	one	that	is	used.

This	is	also	the	case	for	registered	field	functions.

Registering	and	Handling	Events

63

Darwino	DB	API	-	Security

Database	security
Darwino	implements	multi-level	security.	We	have	the	notion	of	the	user,	which	is
mapped	by	the	User	class.	A	user	has	a	CN,	a	DN,	a	list	of	groups,	and	a	list	of	roles.
The	directory	is	used	to	authenticate	the	user	and	to	get	the	list	of	groups.	Generally,	the
groups	come	from	the	directory,	while	the	roles	are	very	specific	to	the	application.
Mapping	between	roles	and	groups	can	be	done	within	a	particular	application.

At	the	server	level,	you	can	control	who	can	and	cannot	access	the	server,	based	on
user	ID,	group,	or	role.

At	the	application	level,	you	can	add	dynamic	roles	to	each	user.	The	JSON	store	will
trust	the	roles	that	are	defined	for	the	user	in	the	User	object.

With	the	Darwino	Enterprise	Edition,	we	have	the	notion	of	instances.	An	instance	can
contribute	roles	and	groups	to	a	particular	user.	For	example,	in	a	multi-tenant
application	running	in	IBM	Connections	with	Communities,	one	tenant	will	be	one
Community.	You	can	define	the	readers	of	a	tenant	as	being	all	of	those	who	are
members	of	a	Community,	and	the	editors	could	be	all	of	those	who	are	owners	of	the
Community.	This	will	change	for	each	Community,	because	the	Communities	each	have
their	own	lists	of	members	and	owners.	In	other	words,	you	have	an	extension	point	that
allows	the	Instance	Manager	to	augment	a	user	with	roles	and	groups–dynamically–for	a
particular	instance.	The	UserContext	in	the	JSON	store	is	the	User	plus	what	has	been
contributed	by	the	Instance	Manager.

At	the	database	level,	you	can	assign	an	ACL.	In	the	ACL,	you	define	who,	among	those
who	have	been	allowed	server	access,	can	access	the	database,	manage	the	database,
read	documents,	create	documents,	delete	documents,	edit	documents,	and	update
someone	else's	social	data.	When	defining	the	database	ACL,	you	are	defining	access
rights	to	the	database	based	on	user	IDs,	groups,	or	roles.

Document	security

Security

64

At	the	Document	level,	you	can	maintain	a	list	of	users	who	can	read	or	read/write	the
document.	Document	security	is	based	on	a	simple	set	of	rules	involving	fields
specifying	read-only	and	read/write	access.	Entries	in	these	fields	can	be	the	names	of
users,	roles,	and	groups.

There	are	four	types	of	document	security	fields:

reader
writer
excluded	reader
excluded	writer

The	same	principles	apply	to	both	readers/writers	and	excluded-readers/excluded-
writers.

Entries

Each	entry	can	be:

a	person
a	group
a	role
everybody,	*

An	entry	can	be	read-only	(reader	field)	or	read/write	(writer	field).	A	writer	entry	is
automatically	a	reader	as	well.	If	an	entry	appears	in	both	the	readers	and	writers,	then	it
is	a	writer.

Security	behavior

If	there	are	no	entries	attached	to	a	document,	then	there	is	no	document	security.	The
user's	access	to	the	documents	will	be	determined	solely	by	the	higher	levels	(database
and	server).	If	there	is	at	least	one	entry	(reader	or	writer,	or	both),	then	there	is
document	security.	If	everybody	should	be	a	reader	and	writers	should	be	limited,	the
solution	is	the	following:

writers	entries	should	contain	the	limited	list
reader	should	contain	one	entry:	everybody	*

Storing	readers/writers

Security

65

Readers	are	stored	in	the	_readers	field,	while	writers	are	in	_writers.	These	fields	can
directly	contain	an	array	of	entries	(see	"1	-	Entries")	or	an	object	containing	several
arrays,	one	per	property.

For	example:

{	

_readers:	['carol',	'ted'],	

_writers:	['alice']	

}	

or	

{	

_readers:	{	

								field1:	['carol',	'ted'],	

								field2:	['bob']	

},	

_writers:	['alice']	

}

Having	sub-objects	is	the	preferred	method,	as	it	allows	a	finer-grained	management	of
the	entries.	For	example,	a	workflow	engine	can	add	a	field	containing	the	participants
for	the	current	step,	and	this	can	be	removed	after	the	step	is	completed.

Helpers	and	Options

There	is	a	Java	class,	SecurityHelper,	that	can	be	used	to	manipulate	these	fields.

When	document	security	is	enabled,	Darwino,	when	composing	a	SQL	query,	adds	a
subquery	to	exclude	what	is	not	allowed	to	be	seen.	This	incurs	a	cost.	To	avoid	this
when	possible,	there	is	a	database	property	indicating	whether	document	security
should	be	enabled.	When	it	is	not	enabled,	generated	queries	can	avoid	the	step	of
running	the	subquery.	A	result	of	this	is	that	if	the	flag	is	not	set,	readers	and	writers	on
documents	will	be	ignored	in	all	of	the	database’s	stores.	Options	for	this	property	are:
no	document	security,	reader/writer	security	only,	ereader/ewriter	security	only,	and	all
security	features.

REST	Services	Restriction

Even	though	a	particular	user	has	access	to	a	database,	you	can	restrict	their	access	via
REST	services.	For	example,	in	your	application	you	may	want	to	expose	a	business
API;	you	may	want	to	manipulate	and	return	objects.	Physically,	they	are	stored	as
documents.	You	might	want	to	expose	your	objects	through	REST	services,	while

Security

66

preventing	direct	access	via	the	default	REST	services	serving	documents;	you	want
people	to	have	access	only	through	your	API.	In	this	case,	you	could	choose	to	prevent
access	to	this	particular	database	via	REST	services.

Dynamic	Filtering

There	is	a	DocumentContentFilter	interface	for	the	REST	services	that	allows	dynamic
filtering	of	the	document	data	that	is	being	produced,	typically	for	security	purposes.
Along	with	that	is	a	feature	of	the	API	that	allows	reconciliation	of	filtered	documents
upon	save,	so	that	if	a	section	was	filtered	for	presentation,	that	filtered	data	is	not	lost
from	the	document	when	saving.

Security

67

Darwino	DB	API

Darwino	API	over	HTTP
The	entire	JSON	store	API	is	exposed	through	REST	services.	Everything	is	supported
except	transactions,	due	to	the	stateless	nature	of	HTTP.	There	are	wrappers	for	Java
and	JavaScript,	with	more	to	follow.

You	start	with	the	session,	and	from	the	session	you	get	access	to	all	of	the	functions,
and	it’s	either	going	locally	or	it’s	going	remotely	through	REST	services.	If	you	are	going
to	be	generating	a	lot	of	database	accesses,	you	should	do	that	on	the	server	through
custom	REST	services	in	order	to	minimize	the	number	of	remote	calls.	It	is	good	to
avoid	using	the	Darwino	API	to	perform	a	lot	of	remote	database	transactions.	As	a
general	rule,	put	the	business	logic	server-side	and	call	it	through	REST	services.

REST	API
All	of	the	features	of	the	JSON	store	are	exposed	through	REST	services,	and	the	REST
services	are	wrapped	in	the	various	language	binders.	The	REST	services	are	optimized
for	performance	and	designed	to	be	easy	to	use.	They	execute	in	different
environments,	server-side	and	in	mobile	hybrid	applications,	and	can	be	coded	once	and
run	in	multiple	platforms.

In	the	Darwino	Playground	is	an	API	Explorer;	this	can	be	used	to	experiment	with	the
REST	Services’	capabilities.	All	of	the	services	are	covered	there,	with	documentation
for	all	of	their	parameters.

Darwino	API	over	HTTP

68

http://playground.darwino.com/playground.nsf/Explorer.xsp

The	Darwino	framework	allows	the	REST	services,	available	by	default,	to	be	disabled	at
the	database	level,	or	to	be	overridden	and	enhanced.	By	overriding	the	service	factory,
is	it	possible	to	permit	access	dynamically	based	on	the	database,	store,	and	current
user.

The	REST	services	can	be	extended	to	accommodate	JavaScript	components,	jqGrid
for	example,	that	expect	the	JSON	they’re	consuming	to	be	in	a	particular	format.	One
way	to	satisfy	such	a	component	would	be	to	transform	the	JSON	client-side,	but	that	is
not	particularly	convenient	or	efficient.

Using	Darwino’s	JsonStoreServiceExtension,	custom	REST	services	can	be	defined	and
the	existing	REST	services’	output	can	be	modified.	Being	server-side,	the	Java	API	can
most	efficiently	render	the	JSON	as	needed	before	it	is	emitted.

Darwino	API	over	HTTP

69

JavaScript	APIs
Darwino	includes	a	JavaScript	implementation	for	the	JSON	Store,	the	User	API,	and
the	Preference	API.

Here,	we	will	look	at	loading	and	making	use	of	the	capabilities	of	the	JavaScript	APIs.

JavaScript	APIs

70

JavaScript	APIs

1	Loading	the	Javascript	files
The	JavaScript	implementation’s	source	is	compacted	and	compressed	into	one	file:
Darwino.js.	This	is	the	one	file	to	include	in	applications;	there	is	no	reason	to	include	the
non-compressed	files.

<script	src=”$darwino-libs/Darwino/Darwino.js”></script>

Note:	While	it	won’t	break	anything	to	load	the	JavaScript	library	more	than	once,	it
should	be	avoided	because	the	browser	will	waste	time	loading	and	parsing	it.

The	JavaScript	API	can	be	explored	in	the	"JavaScript	Snippets"	section	of	the	Darwino
Playground.

Loading	the	JavaScript	files

71

http://playground.darwino.com/playground.nsf/JavaScriptSnippets.xsp

JavaScript	APIs

2	Generic	APIs
Darwino	uses	the	namespace	“Darwino”.	Everything	that	belongs	to	Darwino	is	within
the	Darwino	object.	This	cannot	be	changed.

Included	in	the	darwino.js	is	Darwino.jstore,	which	is	an	entire	JSON	store	API.	This	is
the	entry	point	when	you	want	to	use	the	JavaScript	wrappers	for	the	JSON	data	store.

You	can	directly	call	the	JavaScript	services,	or	you	can	use	these	wrappers,	or	you	can
use	both.	It’s	a	matter	of	convenience.

From	the	darwino.jstore	REST	API,	you	can	call	createRemoteApplication(),	passing	it	a
url	for	where	the	Darwino	runtime	is	running	(for	example:	“$darwino-jstore”).	This
returns	a	pointer	to	the	remote	server.	From	that,	you	can	call	createSession().	With	no
parameters,	it	creates	a	session	for	the	anonymous	user,	or,	if	logged	in,	for	the	current
authenticated	user.	Passed	a	username	and	password,	it	will	create	a	session	on	behalf
of	the	specified	user.	Every	operation	performed	from	that	session	will	use	the	rights	and
identity	of	the	session’s	user.

Once	you	have	the	session	object,	you	have	the	exact	same	API	capabilities	that	you
have	in	Java.	There	are,	however,	several	details	that	are	specific	to	JavaScript:

The	system	constants	(for	example	“SYSTEM_READERS”	and
“SYSTEM_WRITERS”)	that	are	defined	in	Java	are	also	defined	in	JavaScript.	They
are	accessible	through	standard	dot	notation,	as	in:
Darwino.jstore.Database.STORE_COMMENTS

JSONPath	is	implemented	in	JavaScript	as	it	is	in	Java.

Another	point	specific	for	JavaScript	is	the	way	we	handle	binary	content.	Because
JavaScript	is	restricted	to	manipulating	the	binary	data	as	Base64,	it	is	more
efficient	to	do	such	work	on	the	server	in	Java	via	REST	services	and	just	display
the	value,	or	values,	or	links	inside	the	HTML.	JavaScript	is	not	designed	for	this.

Synchronous	vs.	Asynchronous	calls	To	create	an	application	that	is	responsive	and
not	often	blocking	the	user	you	have	to	use	asynchronous	JavaScript,	which	means
that	when	you	call	a	service	you’re	not	blocking	the	UI	thread.	The	entire	JavaScript

Generic	APIs

72

Darwino	API	allows	you	to	do	asynchronous	calls.	You	may	choose	to	do	either
synchronous	or	asynchronous	calls,	but	synchronous	calls	should	be	used	only
when	the	application	demands	them.	Asynchronous	is	the	default;	if	you	want	to	do
synchronous	calls,	you	have	to	pass	parameters,	either	at	the	session	to	change	the
default	(session.Async(false))	or	with	each	individual	call.

By	default,	when	you	call	a	JavaScript	function	that	triggers	a	call	to	a	service,	what
it	returns	is	a	promise.	The	latest	generation	of	browsers	supports	promises,	but
because	not	all	browsers	do	Darwino	provides	an	A+	Compliant	version	that	is
backwards-compatible	with	older	browsers.

A	promise	is	a	call	that	will	eventually	be	executed.	For	example,
session.getDatabase()	will	return	a	promise.	The	promise	itself	has	a	“then”	method
which	takes	as	its	parameters	a	function	to	execute	upon	successful	completion	of
the	promise,	and	a	function	to	execute	in	the	case	of	failure.

Promises	can	be	chained.

Some	functions,	such	as	getDatabase(),	will	return	a	promise,	while	others,	such	as
getStore(),	will	return	a	real	value.	There	is	no	way	to	differentiate	between	the	two
types	other	than	the	fact	that	if	a	function	has	a	parameter	called	“header”	then	it	is
an	asynchronous	function	and	will	return	a	promise.

The	Darwino	Playground	is	a	resource	for	examples	of	synchronous	and
asynchronous	calls	and	promise	handling.

Generic	APIs

73

http://playground.darwino.com/playground.nsf/JavaScriptSnippets.xsp#snippet=/Json%20Store/Async

	var	s	=	"";

session.getDatabase("playground",null,function(database)	{

		var	store	=	database.getStore("pinball");

		//	The	document	is	loaded	asynchronously

		store.loadDocument("1000",	null,	function(doc)	{

						s	+=	">>	Document\n"

						s	+=	"		Unid:	"+doc.getUnid()+"\n"

						s	+=	"		Id:	"+doc.getDocId()+"\n"

						s	+=	"		Json:	"+doc.getJsonString()+"\n"

						darwino.Utils.setText("content","{0}",s);

		});

		//	This	document	does	not	exist

		//	So	the	function	is	only	called	in	case	of	success

		//	Nothing	happens	in	case	of	an	error

		store.loadDocument("1000FAKE",	null,	function(doc)	{

						s	+=	"!!!	Should	never	be	displayed	as	the	document	does	not	exist\n"

						darwino.Utils.setText("content","{0}",s);

		});

});

s	+=	"Loading	document...\n"

darwino.Utils.setText("content","{0}",s);

Generic	APIs

74

Developing	a	Darwino	J2EE	Web
Application
To	support	a	Darwino	J2EE	application,	you	need	to	have	an	application	server	such
Tomcat	or	WebSphere	that	supports	the	Servlet	API.

Darwino	provides	a	broad	set	of	features	and	support	services	to	a	web	application.	It	is
possible	to	create	an	application	that	makes	use	of	Darwino	DB	without	using	the	other
services	that	Darwino	provides,	such	as	creating	connections	and	handling	replication,
but	by	using	the	pre-built	services	in	the	full	Darwino	package,	the	programmer	will	avoid
a	lot	of	unnecessary	work.

Developing	a	Darwino	Web	Application

75

1	Application	initialization
The	Darwino	application	object	should	be	initialized	before	anything	else.	In	order	to
create	the	application,	the	context	listener	must	be	included	in	the	web.xml:

<!—Application	initialization	-->

<listener>

				<listener-class>

								demoApp.app.AppContextListener

				</listener-class>

</listener>

The	listener	is	called	when	the	application	is	started,	and	again	when	it	is	stopped.	The
listener	will	create	the	application	object,	and	destroy	it	when	it	is	no	longer	needed.	It
can	also	be	used	to	initialize	the	relational	database	by	creating	the	tables,	assuming
that	the	RDBMS	user	has	the	rights	to	modify	the	database	schema.

<context-param>

					<param-name>dwo-auto-deploy-jsonstore</param-name>

					<param-value>true</param-value>

</context-param>

The	possible	values	for	dwo-auto-deploy-jsonstore	are:

true:	If	the	database	is	not	yet	deployed,	deploy	it.	If	it	is	already	deployed	and	not
at	the	latest	version,	upgrade	it.
false:	Do	nothing.
force:	Erase	what	exists	and	redeploy	from	scratch.	This	is	mostly	for	developers
who	are	still	making	a	lot	of	changes	and	want	to	start	fresh	every	time.

If	you	don't	have	the	authority	to	update	the	database	schema,	there	is	an	option	you
can	set	in	the	JDBC	definition	level	(in	the	JDBC	connector,	darwino/jdbc,	which	defines
your	connection	to	the	database)	to	have	Darwino	not	try	to	create	the	tables,	but	rather
assume	that	they	exist	and	just	save	the	JSON	definition	of	the	database	-	the
characteristics	that	are	not	related	to	the	DDL	itself,	such	as	the	extracted	fields.

In	practice,	the	developer	will	create	their	own	class,	extending
AbstractDarwinoContextListener,	where	they	will	handle	their	application’s	initialization
needs,	and	refer	to	that	class	in	the	web.xml	so	that	it	is	called.

Application	Initialization

76

The	DarwinoServiceDispatcher

By	default,	a	set	of	services	is	created	by	Darwino,	such	as	the	service	to	access	the
JSON	store.	This	is	done	by	the	service	dispatcher.	It	is	possible	to	override	the
dispatcher.	It	contains	a	set	of	methods	that	can	be	disabled	or	added	to.

Protected	void	initServicesFactories(HTTPServiceFactories	factories)	{

		addResourceServiceFactories(factories);

		addLibsServiceFactories(factories);

		addJsonStoreServiceFactories(factories);

		addSocialServiceFactories(factories);

		addApplicationServiceFactories(factories);

}

It	is	also	possible	to	register	custom	services	by	using	an	extension	point.

Application	Initialization

77

Darwino	Application	filter
The	Darwino	context	should	be	created	when	a	request	comes	in,	and	it	should	be
deleted	when	the	request	is	satisfied.	In	order	to	provide	the	context	for	an	application
request,	a	J2EE	filter	specified	in	the	web.xml	is	called.	This	filter	must	be	specified
immediately	after	authentication	(if	Darwino	is	handling	authentication)	in	the	web.xml
file	so	that	it	is	executed	before	any	others.	Only	in	this	way	can	subsequent	filters	have
access	to	the	context	created	here.

<!--	Filter	for	creating	the	Darwino	Application,	Context	and	DB	session	-->

<!—The	filter	must	be	first	so	all	the	other	filters	can	access	the	app	-->

<filter>

				<filter-name>DarwinoApplication</filter-name>

				<filter-class>com.darwino.j2ee.application.DarwinoJ2EEFilter</filter-class>

</filter>

<filter-mapping>

				<filter-name>DarwinoApplication</filter-name>

				<url-pattern>/*</url-pattern>

</filter-mapping>

The	filter	is	executed	before	all	else	when	a	request	comes,	and	last	when	a	request	is
handled.	Because	this	is	first	in	line,	it	can	do	processing	before	the	request	is	even
seen	by	the	servlet,	and	then	again	after	the	request	is	processed.

The	filter	is	typically	executed	for	all	requests,	but	the	filter	mapping	allows	the	filter	to	be
executed	conditionally.

Darwino	Application	Filter

78

Darwino	libs	and	URL	rewriting
The	DarwinoRewriting	filter	transforms	some	urls	such	as	“$darwino-libs”	into	an	actual
path.	This	remapping	enables	platform	independence	without	requiring	code	changes	to
accommodate	different	platform	configurations.

This	filter	can	also	perform	HTML	rewriting.	When	the	HTML	is	served	to	the	client,	it
can	be	transformed.	This	is	useful	in	CDN	scenarios,	where	the	urls	being	sent	to	the
client	may	need	to	be	modified	to	point	to	alternate	locations.

<filter-name>DarwinoRewriting</filter-name>

<filter-class>com.darwino.j2ee.servlet.resources.DarwinoGlobalRewriterFilter</filt

er-class>

</filter>

<filter-mapping>

				<filter-name>DarwinoRewriting</filter-name>

				<url-pattern>/*</url-pattern>

</filter-mapping>

Darwino	libs	and	URL	rewriting

79

Serving	application	resources
In	order	to	determine	which	requests	should	be	handled	by	Darwino	services,	this	filter
analyzes	the	incoming	requests,	looking	to	see	if	there	are	internal	services	to	handle
them,	and	delegates	them	to	Darwino	if	appropriate	and	passes	them	along	if	they	are
not.

This	service	is	for	serving	'static'	resources,	like	HTML,	CSS,	JavaScript,	etc...	It	ensures
that	it	works	on	all	the	platforms,	including	J2EE	and	mobile.	It	serves	the	resources
located	in	the	platform	specific	directories	(ex:	web	app	for	J2EE,	assets	for	Android...)
but	also	the	ones	packaged	in	the	jar	files	under	/DARWINO-INF/resources.	(META-
INF/resources	cannot	be	used	on	Android).

Also,	depending	on	the	execution	mode	(development	vs.	production,	as	defined	at	the
Platform	object	level),	it	can	choose	to	load	the	minified	version	of	the	files	or	the	full
commented	one.	The	minified	versions	have	a	".min"	inserted	to	their	path,	like
myfile.min.js	or	mytheme.min.css.

<filter-name>DarwinoServices</filter-name>

<filter-class>DWOTPL_PAGEAGENAME.app.DarwinoServiceDispatcher</filter-class>

</filter>

<filter-mapping>

				<filter-name>DarwinoServices</filter-name>				

				<url-pattern>/*</url-pattern>

				<!—DarwinoRewriting	can	trigger	a	forward	-->

				<dispatcher>REQUEST</dispatcher>

				<dispatcher>FORWARD</dispatcher>

</filter-mapping>

Serving	application	resources

80

Enabling	GZIP	compression
Not	all	web	servers	implement	GZIP.	You	can	use	this	filter	to	have	Darwino	process
GZIP	requests	and	return	GZIP	content.	This	can	work	for	requests	as	well	as	response
content.

<filter-name>GZipFilter</filter-name>

<filter-class>com.darwino.j2ee.servlet.gzip.GZipServletFilter</filter-class>

</filter>

<filter-mapping>

				<filter-name>GZipFilter	</filter-name>				

				<url-pattern>/*</url-pattern>

				<dispatcher>REQUEST</dispatcher>

				<dispatcher>FORWARD</dispatcher>

</filter-mapping>

Developing	a	Darwino	Web	Application	5.	Enabling	GZIP	compression

81

Enabling	CORS
To	have	Darwino	implement	the	CORS	(Cross-Origin	Resource	Sharing)	standard,
enable	this	filter.	This	provides	support	for	cross-site	access	controls.

<filter>

				<filter-name>Cors</filter-name>

				<filter-class>com.darwino.j2ee.servlet.cors.CORSFilter</filter-class>

				<init-param>

						<param-name>cors.allowed.methods</param-name>

						<param-value>GET,POST,PUT,DELETE,HEAD,OPTIONS</param-value>

				</init-param>				

				</filter>

				<filter-mapping>

				<filter-name>Cors</filter-name>

				<url-pattern>/*</url-pattern>

				<dispatcher>REQUEST</dispatcher>

				<dispatcher>FORWARD</dispatcher>

				</filter-mapping>

This	CORS	filter	is	based	on	eBay's	implementation	documented	here.

Developing	a	Darwino	Web	Application	6.	Enabling	CORS

82

https://github.com/eBay/cors-filter

Authentication	and	Authorization
A	Darwino	web	app	is	not	just	serving	up	the	UI;	it	is	also	serving	data	through	the	REST
services,	so	you	want	to	be	sure	to	properly	secure	the	application.

There	are	several	ways	to	secure	the	application.	One	way	is	to	utilize	the	web
application	server's	security	mechanisms.	The	web.xml	file	contains	the	J2EE
specification,	and	defines	how	security	is	handled	by	the	J2EE	container.

<!--	Enable	this	to	use	the	J2EE	CONTAINER	security	-->

				<security-role>

								<role-name>user</role-name>

				</security-role>

				<security-constraint>

								<web-resource-collection>

												<web-resource-name>ApplicationRoot</web-resource-name>

												<url-pattern>/*</url-pattern>

								</web-resource-collection>

								<auth-constraint>

												<role-name>user</role-name>

								</auth-constraint>

				</security-constraint>

				<login-config>

								<auth-method>BASIC</auth-method>

								<realm-name>demoapp</realm-name>

				</login-config>

Above,	we	see	a	role	named	"user"	(at	the	web	application	server,	we	would	map	that
name	to	"users").	That	role	is	then	granted	access	to	resources	via	the	url-pattern	(in	this
case,	all	resources).	BASIC	authentication	is	then	specified,	which	will	prompt	for	a
username	and	password.

As	you	can	see,	this	is	standard	J2EE	security.	It	is	often	enough	to	do	the	job,	but	in
some	cases	it	is	not	sufficient.	The	web	containers	are	implementing	only	a	small	set	of
authentication	methods,	and	you	cannot	mix	and	match	them.	For	example,	you	cannot
combine	the	very	secure	form-based	authentication	for	your	web	application	with	basic
authentication	for	your	REST	services,	unless	you're	willing	to	rely	on	extensions	for
your	web	container.

Developing	a	Darwino	Web	Application	7.	Authentication	and	Authorization

83

When	you	want	to	use	the	J2EE	container's	built-in	capability,	the	J2EE	container	must
be	able	to	directly	access	the	directory	in	order	to	authenticate	the	user.	Thus,	the
directory	that	you're	using	must	be	available	to	the	web	application	server.	Some	web
application	servers	have	proprietary	APIs	that	give	them	access	to	non-standard
directories,	but	this	is	not	a	standard	–	it	depends	on	the	particular	application	server.
This	is	a	problem	if	you	want	an	application	that	is	portable.

Darwino	provides	a	set	of	J2EE	filters	to	support	form-based	authentication	and	basic
authentication.	Using	these	filters,	you	can	protect	different	parts	of	your	application
using	different	mechanisms.	These	filters	are	a	subset	of	the	features	implemented	by
Apache	Shiro.	These	filters	are	fully	portable	across	web	application	servers.

A	side	effect	of	this	filter	authentication	is	that	the	users	are	unknown	to	the	web
application	server;	to	the	server	they	are	always	anonymous.	Darwino	has	the
responsibility	for	authentication	and	access	control.

Security	can	be	done	at	the	web	application	server	level,	for	example	with	J2EE’s
Container	security	or	WebSphere’s	Administration	Console.	Alternatively,	it	can	be
handled	via	Darwino’s	authentication	filter.

Darwino’s	authentication	filter	provides	basic	authentication	and	form-based
authentication,	and	it	can	work	with	a	directory	implemented	as	a	Darwino	database.

Accessing	the	current	user	in	Darwino	code	is	done	through	the	DarwinoContext.

Developing	a	Darwino	Web	Application	7.	Authentication	and	Authorization

84

http://shiro.apache.org/

Developing	a	Darwino	Mobile	Application

General	information	about	mobile
applications
Creating	a	mobile	application	in	Darwino	is	like	creating	a	J2EE	application,	except	that
instead	of	building	a	project	that	generates	a	WAR,	you	build	a	project	that	generates
whatever	the	mobile	device	is	expecting:	an	APK	in	the	case	of	Android,	or	an	IPA	for
iOS.

Because	Darwino	uses	the	Android	and	Multi-OS	Engine	SDKs,	the	projects	that	the
Darwino	wizard	generates	for	those	platforms	must	include	what	those	SDKs	are
expecting.

When	creating	a	mobile	app,	the	wizard	offers	a	choice	of	either	native	app	or	hybrid
app.

Developing	a	Darwino	Mobile	Application

85

Mobile	Manifest
The	Mobile	Manifest	contains	the	information	consumed	specifically	by	the	mobile
applications.

In	the	manifest	you	can	define	connections	to	different	servers.	By	default,	your
application	will	be	connected	to	one	server	at	a	time,	but	an	application	might	allow	the
user	to	choose	servers	from	a	list.	The	manifest	is	where	this	list	of	servers	can	be
defined.	To	this	end,	the	DarwinoMobileManifest	object	includes	a	method	called
getPredefinedConnections()	which,	by	default,	uses	a	JSON	file	as	its	connection	source
list.

Some	of	the	other	mobile-specific	options	defined	here	include:

isLocalDatabase()	-	whether	the	application	is	using	a	local	database
isWebMode()	-	does	it	have	web	mode	enabled	for	hybrid	apps
isDataSynchronization()	-	does	it	synchronize	with	the	server
isEncryptedByDefault()	-	should	the	data	be	encrypted

Mobile	Manifest

86

Hybrid	applications
The	idea	is	to	have	true	portability	regardless	of	the	device	where	the	application	is
being	executed,	and	to	work	seamlessly	offline	and	online.	As	the	diagram	below
diagram	depicts,	the	architecture	of	Darwino	on	the	mobile	device	and	on	the	application
server	is	identical.	They	are	both	running	an	HTTP	server;	on	the	server,	it	is
WebSphere	or	Tomcat	or	the	equivalent,	while	on	the	mobile	device	it	is	a	lightweight
server	based	on	NanoHTTPD.	Both	sides	can	run	the	business	logic,	written	in	Java	and
relying	on	Darwino's	runtime	libraries.

The	hybrid	app	running	on	the	mobile	device	instantiates	a	web	component,	but	the	web
component	is	talking	to	the	local	HTTP	server.	The	means	that	the	application	is	truly
portable	between	the	web	compoent	in	the	hybrid	app	and	the	web	browser.	There	are
no	differences.	This	allows	Darwino	to	have	a	single	app	run	in	different	platforms
without	any	changes.

Note	that	the	database	access	is	abstracted	by	the	runtime	libraries.	If	you're	offline,	it
will	access	the	local	database	on	the	mobile	device,	and	if	you're	online	it	will	access	the
remote	database	located	on	the	application	server.	This	is	completely	transparent	for
your	application.

This	is	better	than	a	straight	Apache	Cordova	application,	although	Cordova	can	be
used	if	desired.

Hybrid	Applications

87

Writing	a	Hybrid	specific	service
A	hybrid	app	can	be	extended	by	providing	services.	The	services	will	be	available
whenever	the	app	is	running	on	the	server	or	locally.	It	is	also	possible	to	create	services
that	are	very	specific	to	a	hybrid	app.	For	example,	accessing	the	camera	is	something
that	makes	sense	only	on	a	mobile	device.	To	enable	this	sort	of	feature,	it	is	possible	to
create	actions	that	can	be	triggered	from	the	web	app	and	execute	in	the	native	code	of
the	app.

The	JavaScript	API	contains	an	object	called	darwino.hybrid	that	enables	this	action
mechanism.	Its	isHybrid()	function	returns	a	Boolean	indicating	whether	or	not	the	code
is	running	in	a	hybrid	app.	isHybridAndroid()	and	isHybridIos()	do	a	similar	but	more
specific	evaluation.	These	functions	are	always	available,	without	regard	to	whether	the
code	is	running	in	a	mobile	or	a	web	app.

exec()

The	exec()	function	is	the	equivalent	of	the	shell()	function	found	in	a	variety	of	other
languages;	it	allows	the	calling	of	external	functions.	In	this	case,	“external”	means
device-native	activities.	Exec()	provides	the	bridge	between	the	HTML	side	of	the	app
and	the	native	code.

exec()	has	four	arguments:	a	verb,	a	set	of	arguments	to	be	passed	to	the	verb,	a
callback,	and	a	Boolean	specifying	whether	it	should	run	asynchronously	or	not.

It	is	possible	to	create	custom	actions,	and	there	is	a	set	of	predefined	actions,	including:

switchToLocal
switchToRemote
switchToWeb
synchronizeData
startApplication
openSettings

Registering	actions	is	done	in	AndroidHybridActions,	which	itself	is	registered	as	an
extension	in	AndroidPlugin,	via	the	registerCommands()	method.	The	equivalent
methods	exist	for	iOS,	and	other	OS-specific	implementations	can	be	provided.

Writing	a	Hybrid	specific	service

88

This	makes	it	possible	to	register	a	command	with	a	name.	For	example,	to	create	a
command	that	takes	a	picture	and	attaches	it	to	a	document,	implement	the	execute
method	in	the	AppCommand	class	using	the	context	to	pass	the	necessary	parameters,
such	as	the	docID.	Because	multiple	processes	may	execute	commands
simultaneously,	instance	variables	shoudn’t	be	used	for	storing	data;	commands	should
be	called	with	their	own	local	context.

RPC	callbacks

In	addition	to	exec(),	it	is	possible	to	implement	an	RPC	callback.	RPC	functions	execute
synchronously,	and	they	can	return	a	value.	Unlike	the	commands,	these	functions	are
only	available	to	hybrid	apps.

JavaScript	functions

As	with	registering	commands,	it	is	possible	to	register	JavaScript	functions.	This	is	done
via	the	registerFunctions()	method	in	the	JavaScriptFunctionExtension	class.	These
functions	are	the	ones	called	by	the	RPC	mechanism	described	above.

Writing	a	Hybrid	specific	service

89

Settings
exec()	is	a	way	for	the	web	side	of	the	app	to	communicate	with	native	device	code.	The
converse	of	that	is	done	via	registered	listeners.	For	example,	the	settings	listener	will
notify	the	app	when	something	has	changed	in	the	device	settings.	The	app	could	then
use	isDirty()	to	see	if	the	settings	have	changed	since	the	last	refresh	(after	replication
occurs,	for	example),	and	then	read	and	set	settings	as	required.	Several	functions	are
provided	to	assist	in	this:

addSettingsListener()
setSettings()
getProperty()
getMode()
isDirty()
setDirty()

Settings

90

Developing	for	Android
When	creating	a	hybrid	app	for	Android,	the	wizard	generates	the	classes	required	by
the	Android	SDK,	including	AndroidApplication.java,	AndroidHybridActions.java,	and
SplashScreenActivity.java.	It	also	generates	the	same	classes	used	by	the	J2EE
applications.	When	we	are	in	mobile	or	web	mode,	many	of	the	same	principles	apply,
but	they	have	different	implementations.

On	mobile	the	DarwinoHttpServer	class	is	overridden,	resulting	in	the
DarwinoServiceDispatcher.	In	this	class,	you	can	define	all	of	the	services	that	you	want
to	make	available	through	the	local	HTTP	Server.	By	default,	its	initServicesFactories()
method	calls	a	set	of	initialization	methods:

addResourcesServiceFactories()	-	provides	all	of	the	static	resources:	HTML,
JavaScript,	CSS,	etc...
addLibsServiceFactories()	-	serves	the	JavaScript	and	CSS	libraries
addJsonStoreServiceFactories()	-	provides	the	JSON	Store	REST	services
addSocialServiceFactories()	-	provides	the	User	service	(and	more	to	come)
addHybridServiceFactories()	-	provides	the	hybrid-specific	services,	such	as
commands
addApplicationServiceFactories()	-	allows	the	creation	of	custom	application
services
addLibrariesServiceFactories()	-	let	you	load	libraries	that	register	services	through
extension	points.	It	will	find	an	extension	point	for	HTTPServiceFactory	and	it	will
add	the	result	of	that	extension	point.	This	lets	you	drop	the	library	into	the	project
and	have	its	services	automatically	registered.

You	can	override	any	of	these	methods	to	stop	it	from	registering	its	services.	For
example,	if	you	won't	be	using	the	social	services,	you	can	override
addSocialServiceFactories()	and	stop	the	services	from	being	loaded.

The	wizard’s	output	for	a	native	app	is	smaller;	there	is	no	HTTP	server	included.	The
wizard	will	generate	the	DarwinoApplication	class	and	the	MainActivity,	but	it	will	leave
creating	the	UI	to	the	developer.

Developing	for	Android

91

Developing	for	iOS	---	Multi-OS	Engine
This	wizard	generates	an	iOS	project	that	utilizes	the	Multi-OS	Engine	SDK.	As	with
Android	apps,	the	generated	project	contains	the	core	classes	required	for	a	basic
application,	including	DarwinoServiceDispatcher	and	MainViewController.

Developing	for	iOS

92

Business	APIs

General	information
The	business	APIs	are	an	integral	part	of	the	core	Darwino	environment.	These	APIs
encapsulate	a	set	of	services,	providing	an	easy-to-use,	platform-independent	interface
to	assist	in	coding	common	business	application	functions.

There	are	currently	three	business	APIs:	The	User	Service,	the	Mail	Service,	and	the
Preferences	Service.	This	set	of	APIs	is	architected	to	grow	over	time.	Eventually,	it	will
cover	the	whole	gamut	of	social	services:	file	sharing,	communities,	etc...

Business	APIs

93

User	Service	Overview
This	user	service	has	two	functions:	authentication	and	providing	information	about
users.	This	service	is	used	throughout	the	Darwino	platform.	For	example,	when	creating
a	session,	Darwino	will	utilize	the	User	service	to	determine	the	roles	and	groups
needed	to	assign	the	proper	security.

User	Service

94

User	Information
User	information	is	generally	not	managed	by	Darwino;	it	is	stored	somewhere	else,
such	as	in	an	LDAP	directory,	in	WebSphere	VMM,	or,	in	the	case	of	Domino,	in	the
NAB.	The	User	service	provides	access	to	the	external,	central	directory.	There	may
also	be	peripheral	information	about	users.	For	example,	the	primary	user	directory	may
be	in	LDAP,	while	other	information,	such	as	the	user’s	photograph,	is	stored	in	IBM
Connections	or	Facebook.	The	User	Service	is	architected	to	simplify	working	with	such
distributed	user	information.	One	directory	is	considered	the	main	directory,	and
additional	data	can	come	from	zero	or	more	secondary	directories.

The	directories	that	work	with	the	User	Service	are	normally	implemented	as	managed
beans,	and	they	are	fully-extensible.	Darwino	provides	beans	for	several	LDAP
directories,	Oracle	Directory	Server,	IBM	Tivoli	Directory	Server,	Microsoft	Active
Directory,	the	native	Domino	directory,	and	a	static	directory	for	development	purposes.

To	work	with	the	User	Service:

				return	Platform.getService(UserService.class);

The	User	Service	provides	a	set	of	function	for	finding	users	and	retrieving	details	about
users.	Because	multiple	directories	may	be	referenced,	there	could	be	multiple	IDs	for	a
single	user.	Nonetheless,	there	must	be	only	one	canonical	distinguished	name	(DN).
With	this	in	mind,	there	are	two	operations	available	to	find	a	particular	user.

This	method	returns	the	User	object	corresponding	to	the	provided	DN:

public	User	findUser(String	dn)	throws	UserException;

This	method	finds	the	user	that	best	matches	the	provided	ID.	Depending	on	the
directory	configuration,	the	ID	can	be	a	DN,	an	email	address,	a	short	name,	a	common
name,	etc…

public	User	findUserByLoginID(String	id)	throws	UserException;

findUserByLoginID()	does	not	identify	a	user	with	certainty;	only	findUser()	can	do	that.

There	are	also	several	functions	for	returning	lists	of	users:

User	Information

95

findUsers()	returns	a	list	of	users	based	on	the	provided	String	array	of	DNs.	This	is
an	optimization,	reducing	the	cost	of	finding	multiple	users.	This	is	one	call	for
multiple	users	as	opposed	to	multiple	calls,	each	for	a	single	user.
query()	takes	an	LDAP	query	(allowing	ANDs	and	ORs)	and	returns	a	List	of	all
matches	across	all	directories.
typeAhead()	performs	a	simple	“starts	with”	or	"contains"	query,	depending	on	the
implementation	provided	by	the	driver,	and	returns	a	List	of	all	matches	across	all
directories.

Once	you	have	the	User	object,	you	can	use	its	methods	to	query	a	provider	for	user
details	stored	there.	For	example:

getDN()
getCN()
getGroupCount()
getGroups()
getRoleCount()
getRoles()
getAttribute()

Groups	come	from	the	directory	itself,	while	roles	are	generally	application-
specific.

User	Information

96

User	Authentication
To	use	the	UserService	for	user	authentication,	simply	get	the	UserAuthenticator	object
using	getAuthenticator()	with	the	provider	name	as	the	parameter.	The
UserAuthenticator	that	it	returns	provides	the	authenticate()	method	for	performing	the
authentication	with	the	username	and	password.	Authenticate()	will	return	the	user’s	DN
if	authentication	was	successful.

When	the	web	application	authentication	mechanism	is	being	used,	the	J2EE	server
returns	the	user’s	principal	(a	DN).	This	principal	is	used	by	the	UserService	to	create
the	User	object.	This	User	object	represents	the	user	throughout	Darwino;	there	is	no
other	user	identity.

On	the	mobile	device,	the	implementation	is	different	due	to	the	lack	of	the	LDAP	API.
Instead,	authentication	is	provided	by	connecting	to	the	server	and	storing	the	current
user	DN.	This	is	what	is	done	in	the	"Settings"	page.

Darwino	has	the	ability	to	cache	the	user	information	on	the	mobile	device.	Furthermore,
using	custom	code	a	developer	can	provide	a	list	of	users	whose	information	should	be
prepopulated	in	the	cache	via	a	background	operation.

User	Authentication

97

User	Service	Providers
Darwino	has	a	user	directory	which	functions	as	the	main	user	directory	(Darwino
includes	a	set	of	main	directory	implementations	via	LDAP:	IBM	Domino,	Tivoli	Directory
Manager,	Oracle	Directory,	and	Microsoft	Active	Directory,	plus	a	native	IBM	Domino
directory	implementation).	Every	user	in	this	directory	is	identified	by	a	DN.	This	DN	is
fixed;	it	should	not	change.	From	this	directory	you	can	extract	user	data,	for	example
the	common	name	of	the	organization.	On	top	of	this	directory,	you	can	have	user	data
providers.	They	provide	data	on	existing	users	but	from	a	different	data	source,	such	as
an	external	LDAP	directory,	IBM	Connections,	or	Facebook.

Suppose	that	your	main	directory	is	an	LDAP	directory,	but	you	want	to	have	the	users'
pictures	coming	from	IBM	Connections.	You	can	write	a	user	data	provider	that	will	use
information	you	have	in	your	main	directory	to	locate	the	user	in	the	IBM	Connections
directory	to	extract	the	data	you	need.

You	can	have	as	many	user	data	providers	as	you	want.	A	Gravatar	implementation	that
can	be	used	as	a	secondary	directory	is	included	with	both	Darwino	Editions.	The
Darwino	Enterprise	Edition	also	includes	a	provider	for	IBM	Connections.

Directories	are	made	available	to	the	UserService	by	registering	them	by	name	as
providers.	Registered	providers	are	included	when	searching	via	the	query()	and
typeAhead()	functions.

It	is	also	possible	to	get	user	information	from	a	specific	provider.	The	User	object’s
getUserData	method,	given	the	name	of	a	registered	provider,	will	return	a	UserData
object.	The	UserData	object	has	a	getAttribute()	method	for	retrieving	value	of	the
specified	attribute,	and	a	getAttributes()	method	to	return	all	of	the	User’s	attributes.

For	retrieving	binary	user	data,	there	is	the	getContent()	method	which	returns	the	binary
data	of	the	specified	type,	such	as	“photo”	or	“payload”.	Whereas	attributes	are	cached,
content	data	is	not;	it	is	always	retrieved	from	the	provider	when	it	is	requested.

Because	it	is	possible	to	have	multiple	providers	registered,	user	data	may	be	spread
across	multiple	directories,	and	there	could	even	be	duplications.	For	example,	the
user’s	photo	could	exist	in	multiple	providers’	sources.	To	accommodate	this,	the
findAttribute()	and	findContent()	methods	will	search	exhaustively	across	all	registered

User	Service	Providers

98

providers,	starting	with	the	current	user	object	and	stopping	when	they	find	the	specified
data.	The	developer	doesn’t	have	to	be	concerned	about	where	the	data	is	actually
stored.

Another	issue	that	can	result	from	having	multiple	registered	providers	is	the	need	to
map	a	user’s	identity	across	providers.	The	UserProvider	object	includes	the
UserIdentityMapper()	method,	with	converts	between	a	user’s	DN	and	the	provider’s
username	format.

User	Service	Providers

99

Mail	Service
The	Mail	Service	is	a	basic	interface	for	sending	emails.	There	is	currently	no	REST
service	support	for	the	Mail	Service,	and	it	is	not	supported	on	mobile.

To	send	a	simple	email,	create	a	MailMessage	object	and	set	the	mail	parts	via	the
MailMessage	methods,	then	call	send().

MailService	mailService	=	Platform.getService(MailService.class);

MailMessage	m	=	new	MailMessage();

m.setFrom("playground@darwino.com");

m.setTo("darwinounit2@gmail.com");

m.setSubject("Simple	email");

m.setContentText("This	email	is	a	simple	one");

mailService.send(m);

HTML	body	content	can	be	created	via	the	setContentHTML()	method:

m.setContentHTML(“Here	is	bold	and	<i>italic</i>.”);

To	send	more	complicated	messages,	the	MailMimePart	class	allows	the	creation	of
MIME	content	from	text:

MailMimePart	ht	=	new	MailMimePart();

ht.setContent(new	TextContent("Alternate	HTML	email	representation",TextCon

tent.UTF_ENCODING,HttpBase.MIME_HTML));

Attachments	are	also	supported:

MailMimePart	at	=	new	MailMimePart();

at.setContent(new	TextContent("This	one	is	HTML",TextContent.UTF_ENCODING,H

ttpBase.MIME_HTML));

at.setName("Attachment.html");

m.addMimePart(at);

To	send	images,	pass	the	image	string	as	BASE64	to	setContent()	and	supply	a
filename	for	the	attachment:

Mail	Service

100

MailMimePart	at1	=	new	MailMimePart();

String	IMAGE	=	"R0lGODdhAAGAAKIAAP38+/3h3cjN5P3HwgAAAP8AoP8AGv8EIywAAAAAAAGAAAAD..

...";

at1.setContent(new	Base64Content(IMAGE,HttpBase.MIME_IMAGE_PNG));

at1.setName("Attachment.png");

m.addMimePart(at1);

Mail	Service

101

Preferences	Service
The	Preferences	Service	is	an	interface	for	setting,	reading,	and	removing	user	and
application	preferences.

To	read	a	preference,	create	a	PreferencesService	object,	then	call	getPreferences(),
passing	the	username	and	preference	name	as	arguments.	Then	call	get(),	with	the
preference	name	as	the	argument.

PreferencesService	prefService	=	Platform.getService(PreferencesService.class);

Preferences	p	=	prefService.getPreferences("user1","pref1");

//	This	default	service	has	pref1	&	pref2	defined,	but	not	pref3

_formatText("		pref1:	{0}",p.get("pref1"));

_formatText("		pref2:	{0}",p.get("pref2"));

_formatText("		pref3:	{0}",p.get("pref3"));

To	set	a	preference	value,	first	get	the	preference	and	then	call	set(),	passing	the
preference	name	and	value	as	arguments:

PreferencesService	prefService	=	Platform.getService(PreferencesService.class);

//	Preference	is	set	locally	in	the	object

Preferences	p	=	prefService.getPreferences("user1","myprefs");

p.set("custom","value	1");

_formatText("		custom:	{0}",p.get("custom"));

//	Does	not	appear	because	it	is	not	yet	saved

Preferences	p2	=	prefService.getPreferences("user1","myprefs");

_formatText("		custom:	{0}",p2.get("custom"));

//	Save	it,	and	it	is	now	in	the	DB

p.save();

Preferences	p3	=	prefService.getPreferences("user1","myprefs");

_formatText("		custom:	{0}",p3.get("custom"));

To	delete	a	preference,	call	deletePreference(),	passing	the	username	and	preference
name	as	arguments:

Preferences	Service

102

PreferencesService	prefService	=	Platform.getService(PreferencesService.class);

prefService.deletePreferences("user1","myprefs");

Preferences	Service

103

Optimizing	the	database
It	is	not	often	necessary	to	consider	the	underlying	RDBMS	when	creating	an	application
in	Darwino;	the	services	and	API	abstract	the	details	away	so	you	can	focus	on	the
business	logic.	Still,	when	performance	is	a	serious	concern	you	may	find	a	benefit	in
considering	how	Darwino	works	with	the	tables	and	their	indexes.

When	you	execute	a	query	in	Darwino	(see	Appendix	3.	The	Query	Language	for	details
on	queries),	the	system	will	generate	and	execute	a	SQL	statement	to	satisfy	the
request.	Darwino	will	do	what	it	can	to	make	that	SQL	query	as	efficient	as	possible,
utilizing	the	indexes	that	are	available.	However,	if	the	necessary	indexes	aren't	there,
you	inadvertently	could	force	a	table	scan.	With	small	or	infrequently-accessed	tables
this	may	not	be	an	issue,	but	there	are	many	cases	where	it's	going	to	have	a	noticable
effect.

To	be	sure,	your	Darwino	application	will	work	without	any	indexes	beyond	those	that
Darwino	provides	by	default.	Additional	indexes	come	into	play	only	if	needed	to	make
the	application	faster	once	it	is	in	production.

Default	indexes

There	is	one	set	of	relational	tables	per	Darwino	database.	The	names	of	the	tables
depend	on	the	database	name,	and	the	definition	of	the	tables	is	static	for	a	given
version	of	Darwino.	This	allows	the	tables	to	be	created	once	by	a	DBA,	and	then	used
as-is	even	as	the	application	evolves.	See	Appendix	2.	Mapping	between	a	Darwino	DB
and	a	relational	database	for	details	on	the	Darwino	application	tables.

Darwino	defines	a	minimal	set	of	RDBMS	indexes	to	assist	generic	access	to	the
database	(get	a	document	by	id,	get	document	by	UNID,	index	by	key,
synchronization...).	Because	there	is	a	cost	involved	in	creating	indexes,	Darwino	makes
no	presumptions	about	your	application's	needs	beyond	these	basic	functions.	It	is	up	to
the	application	developer	to	track	the	requests	being	emitted	to	the	database	and	then
add	additional	indexes	if	necessary.

Note:	On	the	database	systems	that	support	native	JSON	access,	JSON	access
indexes	can	be	added.	Refer	to	your	RDBMS	documentation	for	details	and	best
practices.

Optimizing	the	Database

104

The	database	customizer

You	can	use	your	RDBMS's	administration	tools	to	create	indexes	while	you're
developing	and	debugging	your	application.	A	problem	arises	once	you	have	deployed
the	application:	you,	as	developer,	may	no	longer	be	in	control	of	the	database,	and	you
cannot	be	sure	that	your	indexes	will	remain.

Fortunately,	Darwino	has	the	ability	to	generate	the	indexes	for	you.	The
JdbcDatabaseCustomizer	has	a	method,	getAlterStatements(),	that	is	called	when	you
deploy	the	database.	It	takes	a	set	of	SQL	statements	and	executes	them	for	you.	Those
statements	can	create	indexes,	stored	procedures,	triggers...	anything	that	is
understandable	by	your	database.	Because	the	database	schema	is	being	modified,	it	is
necessary	that	you	have	authority	to	perform	database	DDL	write	operations.

Note:	While	you	can	code	logic	in	Darwino	to	act	when	a	document	is	deleted
individually,	there	is	no	event	raised	in	Darwino	when	a	document	is	being	deleted
as	part	of	a	group	operation.	If	your	needs	demand	it,	you	could	code	a	database
trigger	to	do	processing	when	database	records	are	deleted.	For	example,	a
trigger	could	act	on	a	delete,	copying	the	record	to	a	separate	table	for	archiving.
Such	a	trigger	could	be	defined	in	the	database	customizer.

The	database	customizer	includes	a	version	number.	When	the	database	is	loaded	by
Darwino,	that	version	number	is	compared	against	the	last-used	customization	version.
If	the	customizer	returns	a	version	that	is	higher,	indicating	that	there	are	changes
needing	to	be	applied,	then	Darwino	will	call	the	customizer	so	it	can	do	its	job.

Optimizing	the	Database

105

Appendices

Appendices

106

Utility	Libraries
Darwino	comes	with	a	set	of	general	utility	classes.	These	classes	are	located	in	a
variety	of	projects.	A	few	of	the	most	noteworthy	are	described	here.

StringUtil
In	dwo-commons	is	StringUtil.	It	consists	of	routines	to	simplify	handling	Strings.

For	example,	throughout	Darwino	a	null	string	and	an	empty	value	are	considered	as
equivalent.	This	is	similar	to	how	JavaScript	handles	the	two.	For	convenience	and
simplicity,	Darwino	brings	this	approach	to	Java	via	the	isEmpty()	and	isNotEmpty()
functions	in	StringUtil.

AbstractException	and
AbstractRuntimeException
All	of	the	Java	exceptions	that	are	thrown	by	Darwino	inherit	directly	or	indirectly	from
these	classes.	Darwino’s	exception	classes	provide	additional	features	on	top	of	the
classes	provided	by	Java,	in	particular	for	debugging.	They	implement	and	enforce	an
exception-chaining	pattern;	every	time	an	exception	is	caught	in	Darwino	and	another
exception	is	thrown,	the	original	exception	is	passed	as	a	parameter	to	the	new
exception.

public	AbstractException(Throwable	nextException)	{

				this(nextException,	nextException==null?””:nextException.getMessage());

}

To	enforce	this	behavior,	all	of	the	constructors	of	Darwino	exceptions	must	have	this
parameter.	It	may	be	null,	but	it	must	be	present;	a	conscious	decision	is	required	to	omit
the	passed	exception.

A	clear	benefit	of	this	exception	passing	is	that	stack	traces	are	more	informative	than
they	would	be	otherwise.

Utility	Libraries

107

Messages
The	Messages	class	provides	a	simple	mechanism	for	accumulating	information	about
errors	and	warnings.	A	Message	consists	of	a	severity	int	and	a	message	String.	The
Messages	that	are	accumulated	can	then	be	handled	as	a	group,	perhaps	for
presentation	to	the	user.

Profiler
There	is	a	profiler	bundled	with	Darwino.	There	is	no	UI	provided,	but	beyond	the	Java
interface	there	is	a	REST	service	that	can	provide	access	to	the	profiler	data.	This	is	an
application	profiler,	as	opposed	to	a	low-level	profiler.	It	provides	the	ability	to	add	hooks
into	application	code	to	monitor	high-level	routines	and	then	to	dump	that	collected
information	later.

HttpClient
The	HttpClient	service	is	an	easy-to-use	implementation	that	is	JSON-friendly.	Methods
such	as	getAsJson()	(which	parses	the	value	and	returns	it	as	a	JSON	object),
putAsJson(),	deleteAsJson(),	and	postAsJson()	simplify	working	with	REST	services.
Because	it	works	the	same	on	all	Darwino	platforms,	code	implementing	it	doesn’t	have
to	be	concerned	with	platform-specific	differences.

Tasks
A	task	is	a	piece	of	code	that	can	be	executed	synchronously	or	asynchronously.
Darwino’s	task	framework	encapsulates	the	standard	task	execution	implementation	of
each	supported	platform,	allowing	application	code	to	remain	unconcerned	with	the
particulars	of	each	platform.

When	code	executes	a	Task,	it	has	access	to	the	TaskExecutorService.	Which	enables
passing	parameters	to	tasks.	Thus,	tasks	can	run	with	different	contexts.	When	the
tasks’s	execute()	method	is	called,	it	is	passed	a	TaskExecutorContext.	This	context
contains	the	parameters.

Utility	Libraries

108

If	the	platform’s	task	executor	maintains	progress	information	about	its	tasks,	the
Darwino’s	TaskExecutorService	can	provide	that	progress	information	to	the	context.
Darwino	provides	progress	dialogs	for	the	various	platforms.

The	TaskExecutorContext	includes	an	updateUi()	method	with	a	Runnable	that	allows
the	backend	task	to	update	the	user	interface	as	needed.	The	UI	task	is	then	executed	in
the	UI	thread,	which	is	required	on	client	apps.

There	is	also	a	task	scheduler.	It	allows	one-time	executions	and	scheduling	by	periodic
intervals,	and	it	supports	time	ranges	(for	example,	“run	hourly	between	7:00am	and
5:00pm”).

Tracer
The	HttpTracerService	can	trace	all	of	the	requests	that	are	coming	to	the	server.	As
long	as	the	requests	are	being	served	by	the	HttpService,	the	tracer	(a	managed	bean)
can	be	told	precisely	what	should	be	traced.	Tracing	can	be	restricted	to	specific	urls
and	particular	types	of	data	(such	as	headers,	details,	and	content).

Utility	Libraries

109

Mapping	between	a	Darwino	DB	and	a
relational	database
A	Darwino	database	is	mapped	to	a	set	of	relational	tables.	These	tables	store	all	of	the
documents	for	all	of	the	stores	in	all	of	the	instances	of	the	database.

To	optimize	the	performance	of	the	database,	one	would	add	indexes	depending	on	the
nature	of	the	queries	that	are	being	performed.	There	is	an	art	to	this	optimization;
beside	application-specific	factors,	there	may	be	considerations	related	to	the	underlying
database	engine…	Postgres,	DB2,	and	MySQL	could	have	different	optimizations.

There	is	one	set	of	relational	tables	per	Darwino	database.	If	the	names	of	the	tables
depend	on	the	database	name,	the	definition	of	the	tables	is	static	for	a	given	version	of
Darwino.	This	allows	the	tables	to	be	created	once	by	a	DBA,	and	then	used	as-is,	even
when	the	application	evolves.

For	performance	reasons,	indexes	on	columns	can	be	added.	As	the	platform	doesn't
know	most	of	the	queries	that	will	be	executed	by	the	application,	it	predefines	a	minimal
set	of	indexes	to	speed	up	the	generic	access	to	the	database	(get	a	document	by	ID,
index	by	key,	synchronization...).	But	it	is	up	to	the	application	developer	to	track	the
requests	being	emitted	by	the	database	and	then	add	additional	indexes	as	required.

On	the	database	systems	that	support	native	JSON	access,	JSON	access	indexes	can
also	be	added.	Please	refer	to	your	database	system	documentation	for	best	practices.

Darwino	application	tables
The	prefix	of	Darwino's	table	names	is	the	name	of	the	Darwino	database.	This	restricts
us	to	names	that	are	compatible	with	the	rules	of	the	relational	database	system.	The
suffix	is	always	an	underscore	followed	by	three	characters.	Let’s	take	a	look:

_dsg:	The	Design	table.	This	includes	the	lists	of	fields,	stores,	indexes,	etc…	There
is	at	least	one	record	in	this	table,	with	the	value	“DATABASE”	in	its	type	column.
The	name	column	is	empty,	and	the	json	column	contains	the	definition	of	the
database.	When	you	initialize	a	Darwino	database,	it	will	create	this	set	of	tables
and	store	the	database	definition	in	that	single	record	in	the	_dsg	table.

Mapping	between	a	Darwino	DB	and	a	relational	database

110

In	the	database	definition	is	a	field	called	“version”.	When	you	initialize	the
database,	the	version	will	be	“1”.	Every	time	the	database	definition	changes,
increment	the	number.	This	is	important	in	Darwino	because	the	application	is
disconnected	from	the	database,	so	it	is	possible	to	have	a	database	design	that	is
not	at	the	level	expected	by	the	application.	When	your	code	is	opening	the
database,	it	will	open	this	record	from	the	_dsg	table,	extract	the	version	value,	and
do	a	compare.

If	it’s	a	match,	it	will	open	the	database,	return	a	handle,	and	off	you	go.

In	another	case,	the	application	may	be	expecting	to	work	with	a	higher	version	of
the	database.	When	opening,	you	specify	how	to	update.	One	choice	is	to	upgrade
the	database	by	running	a	function	that	you	provide	to	give	the	new	database
definition.

If,	on	the	other	hand,	the	application	is	expecting	a	lower	level	of	the	database,	it	will
fail.	The	application	will	not	be	able	to	update	the	database	because	it	won’t	know
how.

In	the	DatabaseDef	class,	the	loadDatabase	method	does	the	job	of	checking	the
version	number	and	returning	either	null	or	a	handle	to	the	desired	database
(referenced	by	its	name).

If	the	runtime	itself	has	been	updated,	the	“tableVersion”	in	the	database	definition
comes	into	play.	It	is	not	managed	by	the	application;	it	is	managed	by	the	runtime.
If	Darwino	has	been	upgraded	and	needs	to	upgrade	the	design	of	its	default	tables,
it	will	do	so	transparently	to	the	user,	as	long	as	the	RDBMS	user	has	the	rights	to
run	DDL	statements.

There	is	also	versioning	associated	with	the	DatabaseCustomizer,	which	is	where
the	developer,	using	a	set	of	DDL	statements,	defines	additional	indexes,	stored
procedures,	and	triggers,	typically	for	the	purpose	of	optimizing	the	performance	of
the	application.	See	Optimizing	the	database	for	details.

_doc:	The	document	table.	There	is	one	row	per	document.	This	row	contains	the
JSON	value	as	well	as	some	metadata.

docid	–	autogenerated	key	value.	This	is	dependent	on	the	database	and	on
the	instance	in	the	database.
instanceid	–	identifies	the	instance	within	the	database	that	“contains”	this
document
storeid	–	along	with	the	docid	and	instanceid,	define	the	unique	primary	key	of

Mapping	between	a	Darwino	DB	and	a	relational	database

111

a	document.
unid	–	The	document's	unique	identifier
repid	–	ID	of	the	server	where	this	document	was	last	created/modifed.	This
helps	tracking	where	the	doc	comes	from,	and	optimizing	replication	by	not
sending	a	document	back	to	where	it	changed.
pstoreid	–	a	pointer	to	the	store	of	the	parent	document
parent	–	a	pointer	to	the	parent	document
smstoreid	–	pointer	to	the	syncmaster	store
smunid	–	pointer	to	the	syncmaster	document
seqid	–	sequence	number	used	internally	in	replication
updid	–	internal	replication	version	ID
udate	–	the	last	replication	time	of	the	document.	This	is	updated	automatically
sftdel	–	soft	delete	flag,	not	currently	used
cdate	–	creation	date	of	the	document
cuser	–	the	user	that	created	the	document
mdate	–	the	date	of	last	modification
muser	–	the	user	that	last	modified	the	document
rsec	–	used	internally	to	support	reader	fields
rsed	–	used	internally	to	support	writer	fields
json	–	the	JSON	data	of	the	document
sig	–	a	signature	for	the	document,	not	used
changes	–	used	internally	to	support	replication
cdatets	–	an	easily	readable	and	queryable	copy	of	the	creation	date	in
timestamp	format
mdatets	–	an	easily	readable	and	queryable	copy	of	the	modification	date	in
timestamp	format

Note:	the	date	fields	(udate,	cdate,	and	mdate)	are	stored	as	integers.	They	are
the	Java	date	converted	to	a	long.	They	represent	the	number	of	milliseconds
since	the	1/1/70.	This	is	to	accommodate	the	precision	required	for	replication,
and	the	requirement	that	the	dates	be	completely	compatible	with	all	possible
relational	database	systems.

_bin	table:	Used	to	store	binary	data	associated	with	documents,	but	outside	of	the
documents.	Here	data	is	stored	with	a	computed	key	based	on	the	hash	of	the	file’s
contents,	and	can	be	shared	between	multiple	documents	pointing	to	the	same	bin
record.

Mapping	between	a	Darwino	DB	and	a	relational	database

112

_dov	table:	This	stores	the	list	of	fields	extracted	from	documents.	The	extracted
data	is	stored	in	one	of	four	columns,	one	for	each	possible	data	type;	they	are
named	ftxt,	fnum,	fbol,	and	fdat.

_idx:	This	is	where	indexes	are	stored.	There	are	entries	for	each	document,	and	for
each	entry	there	are	stored	keys	and	values.

_idv:	Like	the	_dov	table,	but	for	the	index	level,	because	we	can	store	fields	at	the
index	level.

_lck:	This	is	for	document	locking;	not	currently	used.

_rep:	Stores	the	replication	information.	It	stores	the	last	replication	date	for	one
replication	profile.	The	last	replication	date	for	each	replication	profile	is	stored	in	the
target	of	a	replication.	When	pushing	replication	changes,	the	first	step	is	to	ask	the
target	for	the	last	replication	time.	The	target	checks	this	table	and	returns	the	value.
The	source	then	composes	the	list	of	changes	and	sends	that.	This	is	because	you
want	to	base	the	replication	on	the	target’s	clock.

_sec:	Stores	the	reader	and	writer	information.	For	every	document,	it	stores	the
entry	name	and	whether	it’s	read-only	or	read/write.

_sed:	Like	the	security	table,	but	for	ereaders	and	ewriters.

_stu:	This	is	the	deletion	stub	table,	used	during	replication	to	convey	that	a
document	has	been	deleted.

_tag:	Stores	the	social	data	tags.	It	is	indexed	by	the	docid,	and	there	is	one	row	for
every	tag.

_usr:	The	user-related	social	data,	such	as	the	rating	and	sharing	information,	as
well	as	whether	the	document	has	been	read	and	when	it	was	last	read.	It	also
stores	the	replication	time	information	for	this	data.

Database	definition	class
This	class	defines	the	JSON	database,	including	the	stores,	the	fields	being	extracted,
the	indexes,	the	security,	and	any	other	database	options.

setACL()	is	used	to	set	the	access	levels	of	people,	groups,	and	roles	(who	can
read,	edit,	create	documents,	etc…).	These	access	rights	can	be	resolved
dynamically.	In	particular,	they	can	be	resolved	for	an	Instance.

Mapping	between	a	Darwino	DB	and	a	relational	database

113

setDocumentSecurity(int	documentSecurity)	determines	how	readers	and	writers
fields	will	be	handled.	Choices	include	no	reader/writer	security,	reader	only,	writer
only,	etc...
setInstanceEnabled(boolean	instanceEnabled)	–	are	Instances	allowed	or	not.
setPreventRestAccess(Boolean	preventRestAccess)	–	Darwino	provides	a	set	of
REST	services	so	that	data	can	be	read	and	written	via	REST	services.	Disabling
REST	services	prevents	raw	REST	access	to	document	data,	ensuring	that	all
access	be	through	the	appropriate	business	logic.	If	this	is	disabled,	then,	even	if
REST	services	are	deployed,	Darwino	will	deny	REST	access	to	the	data.
setReplicaID	-	internal
setReplicationEnabled(boolean	replicationEnabled)	–	If	replication	is	enabled,
Darwino	records	more	data	to	support	replication,	including	deletion	stubs.	This
overhead	can	be	avoided	by	disabling	replication.
setSoftDeleteEnabled	–	not	implemented
setTableVersion	–	internal
setTimeZone	–	Darwino	stores	dates	in	ISO	8601	format,	by	default	using	GMT	as
the	time	zone.	Setting	this	value	will	override	that	default.	Dates	will	be	stored
instead	using	the	specified	time	zone.	There	is	never	a	loss	of	certainty;	Darwino
always	stores	the	values	with	a	time	zone;	this	merely	determines	which	zone	is
used	as	the	default.

Stores

Physically,	a	store	is	nothing;	it	is	just	a	concept.	It	is	actually	a	logical	collection	of
documents	in	a	database.	There	is	not	one	table	per	store;	instead	stores	are
implemented	as	a	column	value	in	each	document.	Every	document	in	a	database	is
identified	by	its	UNID	and	its	storeID;	together,	these	two	fields	define	the	document’s
key.	This	way	of	implementing	stores	limits	the	actions	needed	to	maintain	the
database’s	DDL,	and	it	allows	cross-store	queries	in	the	same	database

Stores	have	several	options:

setAnonymousSocial(boolean	anonymousSocial)	–	Enabling	this	allows	tracking	of
the	social	activities	of	the	anonymous	user;	for	example,	tracking	when	anonymous
reads	a	document.	This	defaults	to	false,	since	there	are	few	cases	where	it	would
be	desired.
setFTSearch(_FtSearch	ftSearch)	–	Specifies	what	data	should	be	extracted	from
the	JSON	to	a	table	so	it	can	be	fulltext-indexed.	If,	for	example,	you	might	specify
"$"	if	you	want	to	index	the	entire	document,	or	just	the	JSON	path	for	the	field

Mapping	between	a	Darwino	DB	and	a	relational	database

114

"Title"	if	you	want	that	field	to	be	the	only	indexed	data.

setFtSearchEnabled(boolean	fulltextEnabled)	–	Enables	full	text	search	of	the
documents	in	the	store.	Darwino	uses	the	full	text	search	engine	provided	by	the
host	database.	This	results	in	maximum	performance	and	low	overhead.	It	is
possible	to	test	at	run	time,	using	the	Store-level	method	isFtSearchEnabled(),
whether	the	database	supports	full	text	search,	so	the	UI	can	be	adjusted
accordingly.	None	of	the	databases	know,	now,	how	to	do	full	text	search	on	the
JSON	documents.	The	_fts	table	contains	the	names	and	values	of	the	fields	that
you	wish	to	fulltext	index.

setLabel(String	label)	-	User-friendly	label	displayed	to	the	user.

setPreventRestAccess(Boolean	preventRestAccess)	–	If	REST	access	is	enabled	at
the	database	level,	it	can	be	prevented	at	the	store	level.

setReadMarkEnabled(Boolean	readMarkEnabled)	–	This	applies	to	the	social	data
read	marks,	and	is	set	to	false	by	default.	If	enabled,	when	a	document	is	read	by	a
user	who	is	not	anonymous	(unless	setAnonymousSocial	is	enabled),	that
document	is	marked	as	read	by	that	user.	This	option	exists	so	that	the	write
operation	required	at	every	read	to	support	read	makrs	can	be	avoided.

setTaggingEnabled(boolean	taggingEnabled)	–	Enabling	this	allows	Darwino	to
maintain	an	array	of	tags	for	each	document.	You	can	search	documents	by	a	tag	or
a	combination	of	tags.	There	is	also	a	well-optimized	function	at	the	store	level	that
returns	a	tag	cloud.

setFields()	has	two	forms.	The	simple	form	takes	the	name	of	a	field	as	its
parameter	and	it	indexes	that	field.	The	other	form	takes	an	array	of	FieldNodes.

addQueryField()	has	five	forms.	The	first	takes	one	parameter,	that	being	that	name
of	the	field.	It	will	use	that	value	both	as	the	field	name	and	as	the	path	to	the	data.
The	next	takes	three	parameters:	the	field	name,	the	data	type,	and	a	Boolean
determining	whether	the	field	is	multiple.	The	third	adds	a	specification	of	the	path	in
the	JSON.	The	fourth	form	takes	a	single	parameter,	this	being	a	callback
fieldFunction,	which	itself	has	several	parameters:	the	field	name,	the	data	type,	the
multi	Boolean,	the	name	of	a	registered	callback	function	and	a	JSON	path	to	the
data	in	the	JSON	document	which	acts	as	the	parameter	to	the	referenced	callback
function.	The	fifth	form	is	like	form	#4,	but	uses	a	Darwino	query	language
statement	in	place	of	the	function	name	and	parameter.

Mapping	between	a	Darwino	DB	and	a	relational	database

115

By	allowing	a	callback	function	or	query	result,	the	function	allows	sophisticated
processing	to	be	performed	when	creating	the	field	value,	which	can	then	be	used	in
a	query.

Indexes

In	Darwino,	an	index	is	the	MAP	action	in	MAP/REDUCE.	It	allows	fast	access	to	data,
as	well	as	pre-computing	of	some	data	(ex:	number	of	children,	social	data...)	and	then
querying	these	data.	It	associates	a	key	with	a	value	for	a	selected	set	of	documents.
The	value	can	be	computed	from	the	actual	JSON	document.

The	store.addIndex()	method	creates	an	index	based	on	a	subset	of	the	data	in	the
JSON	documents.	Once	you	add	the	index,	you	define	the	keys	and	the	values	to
extract	from	the	JSON	document.

When	you	execute	a	query	on	the	index	using	the	Darwino	API,	you	can	choose	to
return	either	the	values	in	the	index,	or	the	JSON	value	in	the	document	itself.

For	example,	index.keys(“_unid”)	will	set	the	unid	as	the	key.	index.valuesExtract(“\”$\””)
will	specify	the	root	of	the	JSON	value	(the	entire	document)	as	the	value	to	extract.	This
is	using	JSON	Path	expressions.

When	specifying	the	keys,	you	can	specify	whether	the	keys	are	unique	or	not.	This	is
done	by	calling	the	setUniqueKey(Boolean	uniqueKey)	method.

Mapping	between	a	Darwino	DB	and	a	relational	database

116

The	Query	Language
The	query	language	in	Darwino	is	modeled	on	the	one	used	in	MongoDB.	This	is
unsurprising,	given	that	MongoDB	is	a	database	for	JSON	documents.	It	uses	JSON	as
a	query	language;	the	queries	are	JSON.

Darwino's	query	language	is	used	to	apply	an	evaluation	formula	on	top	of	the	JSON
store,	but	it	can	be	used	beyond	that.	It	can	be	used	to	query	any	kind	of	JSON
document;	the	JSON	doesn't	have	to	reside	in	the	database.

Working	in	the	context	of	the	JSON	store,	the	query	language	is	used	to	populate
cursors.	After	opening	a	cursor,	pass	a	query	string	or	a	JSON	object	as	the	argument	to
the	cursor's	query()	method.

The	syntax	is	straightforward.	All	queries	are	enclosed	in	braces.	A	very	simple	query
would	be	a	search	for	a	specific	value	in	a	field	at	the	document	root	level.	This	would
take	the	form:

{city:'Springfield'}

This	{fieldname:'value'}	syntax	is	a	shorthand	form	for	{fieldname:	{$eq:	'value'}},	using
the	"$eq"	operator.	This	shorthand	exists	because	most	of	the	time	we	want	to	test	for
equality.

The	field	name	can	be	either	a	literal	string	or	a	complete	JSON	path.	The	string	does
not	have	to	be	quoted;	this	is	a	benefit	of	Darwino's	extension	of	JSON	standard
notation.	JSON	specs	have	field	names	between	a	pair	of	double	quotes.	Darwino
respects	that,	but	also	permits	single	quotes	or	none	at	all.

Expanding	on	this	example,	we	can	add	an	"AND"	operator:

{$and:	[{city:'Springfield'},{state:'TX'}]}

Operators
Naturally,	there	is	a	set	of	comparison	operators.	Here	is	a	partial	list;	more	wil	be	added
over	time.

The	Query	Language

117

http://docs.mongodb.org/manual/tutorial/query-documents/

Note:	All	operators	start	with	the	dollar	sign.	Arguments	are	typed:	"1"	is	not	equal
to	1.

$and	-	Filters	on	all	documents	that	match	every	field/value	pair	in	the	provided
array	of	conditions.

	{$and:	[{city:'Springfield'},	{state:'New	York'}])	

$contains	-	Is	the	first	argument	contained	within	the	second?	The	search	value	can
be	an	array	or	a	string.

	{array:	{$contains:	'a'}}	

	{string:	{$contains:	'g'}}	

$eq	-	Tests	for	equality.		{city:	{$eq:	‘Springfield’}}	

There	is	a	handy	shorthand	version	of	this	syntax,	which	does	not	require	the	"$eq".
	{city:'Springfield'}	

$exists	-	Tests	whether	a	field	exists	or	not.

	{field1:	{$exists:	true}	

$gte	-	Greater	than	or	equal	to.

	{qty:	{$gte:	20}}	

$gt	-	Greater	than.

	{qty:	{$gt:	19}}	

$in	-	Test	whether	a	value	is	in	an	array	of	values

	{it:	{$in:	['can','we','find','it']}}	

$lte	-	Less	than	or	equal	to.

	{qty:	{$lte:	20}}	

$lt	-	Less	than.

	{qty:	{$lt:	21}}	

$ne	-	Tests	for	inequality.

	{Joe:	{$ne:	'Joseph'}}	

$nin	-	Tests	whether	a	value	is	NOT	in	an	array	of	values.

	{findme:	{	$nin:	['can','we','find','it']}	}	

$nor	-	Returns	documents	that	fail	to	match	both	conditions.

The	Query	Language

118

	{$nor:	[{price:	1.99	},	{size:	large'}]}	

$not	-	Used	in	conjunction	with	other	operators,	it	will	negate	the	result,	returning
documents	that	do	not	match	the	query.

	{cost:	{$not:	{$gt:	10.00}}}	

$or	-	Returns	documents	that	match	both	conditions.

	{$or:	[{price:	{$lt:	10}},	{	size:	small'}]}	

$path	-	Evaluates	the	provided	JSON	path	and	returns	the	value.

	{$upperCase:	{$path:	'g.il'}}	

$type	-	Tests	whether	the	value	is	of	the	specified	type.		1:	number			2:	string			3:
object			4:	array			8:	Boolean	

$upperCase	and	$lowerCase	-	Converts	the	case	of	the	argument.

	{$upperCase:	{'cobol'}}	

The	MongoDB	Query	documentation	serves	as	a	good	reference	for	the	Darwino	query
language,	as	long	as	you	keep	in	mind	that	the	two	are	not	100%	identical.	When	using
the	MongoDB	reference,	ignore	the	MongoDB	API	and	focus	on	the	query	language
itself.

Optimization
Darwino	will	take	these	queries	and	transform	them	to	SQL	as	much	as	it	can,	given	the
capabilities	of	the	underlying	RDBMS	for	which	the	query	generator	is	coded.	There	are
three	possible	outcomes	of	this	attempt:

The	entire	query	can	be	converted	to	SQL.
Only	fragments	of	the	query	can	be	converted.
No	conversion	is	possible.

In	cases	where	only	partial	or	no	conversion	is	possible,	Darwino	will	use	the	SQL	that	it
CAN	generate	to	first	select	from	the	database,	and	then	it	will	"manually"	filter	the	result
fully	to	satisfy	the	query.	It	will	do	this	by	loading	the	resulting	documents	one	at	a	time
and	then	applying	the	remainder	of	the	conditions	against	the	in-memory	document.

It	is	good	practice	when	querying	large	datasets	to	keep	in	mind	the	capabilities	of	the
RDBMS,	and	to	write	your	queries	in	such	a	way	as	to	permit	the	query	generator	to	do
the	best	possible	job	in	translating	the	query	into	SQL.	See	Optimizing	the	database	for

The	Query	Language

119

https://docs.mongodb.org/manual/tutorial/query-documents/

details.

Extraction	Language
A	query	will	return	the	entire	document;	you	will	often	be	interested	in	only	certain	values
from	the	document.	Darwino	can	apply	an	extraction	to	the	result	of	a	query.

The	extraction	formula	is	in	the	form	of	a	JSON	document.	The	JSON	document	is	a	list
of	columns,	and	each	column	has	a	value.	If	the	value	is	a	literal	string,	it	will	be
evaluated	as	a	JSON	path	and	the	value	of	that	path	will	be	the	result.

In	this	example,	the	result	wil	be	two	columns	named	"first"	and	"last",	populated	with	the
values	found	in	the	JSON	paths	"firstName"	and	"lastName"	in	the	document.

{	first:	"firstName",	last:	"lastName"	}

Extending	this,	we	can	apply	functions	during	the	extraction	to	transform	the	results.

{	first:	"firstName",	last:	{$upperCase:	"lastName"}}

All	of	the	query	operators	and	functions	can	be	used	here,	and	it	is	also	possible	to	add
your	own	functions,	making	this	a	very	powerful	feature.

The	extraction	takes	place	server-side.	While	this	clearly	has	the	performance	benefit
that	comes	from	not	transmitting	unneeded	data	to	the	client,	it	also	allows	your
functions	to	utilize	server	resources,	such	as	the	cache	and	connections–such	as	to
LDAP	directories	for	lookups.

Aggregation
There	is	a	set	of	aggregation	operators	in	the	query	language,	permitting	actions	such	as
counting	and	summing	and	categorization	of	query	results.	These	operators	apply	on	the
entries	belonging	to	categories.	Similar	to	the	extraction	language,	the	syntax	is	a	JSON
document	in	which	every	entry	is	a	column.	Also	similar	to	extraction,	the	order	of	the
entries	doesn't	matter.

The	aggregate	operators	($count,	$sum,	$avg,	$min,	and	$max)	use	a	JSON	path	as	a
parameter.

The	Query	Language

120

{Count:	{$count:	"@manufacturer"},	Sum:	{$sum:	"@released"},	Avg:	{$avg:	"@release

d"},	

								Min:	{$min:	"@released"},	Max:	{$max:	"@released"}}

Behind	the	scenes,	Darwino	constructs	a	SQL	query	that	uses	the	database's	native
aggregation	operators.	This	is	good	in	terms	of	efficiency:	the	document	selection,	value
extraction,	and	aggregation	is	done	server-side	using	efficient	SQL	statements.	The
database	does	the	work.

The	Query	Language

121

	Introduction
	Introduction to Darwino
	Darwino architecture
	Required Infrastructure

	Installing a development environment
	Using the studio
	Important concepts
	Platform object
	Services and extensions
	Logging
	Properties
	Managed Beans

	JSON library and data binding
	HttpClient
	Darwino application objects
	Application
	Manifest
	Context

	Darwino DB API
	Concepts
	Defining and deploying the database
	Documents
	Cursors and Queries
	Accessing and Storing Social Data
	Registering and Handling Events
	Security
	Darwino API over HTTP

	JavaScript APIs
	Loading the JavaScript files
	Generic APIs

	Developing a Darwino Web Application
	Application Initialization
	Darwino Application Filter
	Darwino libs and URL rewriting
	Serving application resources
	Developing a Darwino Web Application 5. Enabling GZIP compression
	Developing a Darwino Web Application 6. Enabling CORS
	Developing a Darwino Web Application 7. Authentication and Authorization

	Developing a Darwino Mobile Application
	Mobile Manifest
	Hybrid Applications
	Writing a Hybrid specific service
	Settings
	Developing for Android
	Developing for iOS

	Business APIs
	User Service
	User Information
	User Authentication
	User Service Providers

	Mail Service
	Preferences Service

	Optimizing the Database
	Appendices
	Utility Libraries
	Mapping between a Darwino DB and a relational database
	The Query Language

